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Abstract—Automated filtering of toxic conversations may help
an Open-source software (OSS) community to maintain healthy
interactions among the project participants. Although, several
general purpose tools exist to identify toxic contents, those may
incorrectly flag some words commonly used in the Software
Engineering (SE) context as toxic (e.g., ‘junk’, ‘kill’, and ‘dump’)
and vice versa. To encounter this challenge, an SE specific
tool has been proposed by the CMU Strudel Lab (referred as
the ‘STRUDEL’ hereinafter) by combining the output of the
Perspective API with the output from a customized version of the
Stanford’s Politeness detector tool. However, since STRUDEL’s
evaluation was very limited with only 654 SE text, its practical
applicability is unclear. Therefore, this study aims to empirically
evaluate the Strudel tool as well as four state-of-the-art general
purpose toxicity detectors on a large scale SE dataset. On this
goal, we empirically developed a rubric to manually label toxic
SE interactions. Using this rubric, we manually labeled a dataset
of 6,533 code review comments and 4,140 Gitter messages. The
results of our analyses suggest significant degradation of all
tools’ performances on our datasets. Those degradations were
significantly higher on our dataset of formal SE communication
such as code review than on our dataset of informal commu-
nication such as Gitter messages. Two of the models from our
study showed significant performance improvements during 10-
fold cross validations after we retrained those on our SE datasets.
Based on our manual investigations of the incorrectly classified
text, we have identified several recommendations for developing
an SE specific toxicity detector.

Index Terms—toxicity, chat, code review, developer communi-
cation, benchmark, rubric

I. INTRODUCTION

Prior research have found multiple evidence of toxic inter-

actions, such as: profanity, insult, hate speech, identity attack,

misogynistic remarks, flirtations, or sexual innuendos, among

several Free / Open Source Software (FOSS) projects [1]–[5].

Toxic interactions may have serious repercussions on a FOSS

project. For example, a victim of toxic conversation may be-

come afraid to express him/herself, therefore get demotivated,

and may eventually leave the project.

The problem of online toxic conversations are more

widespread than the FOSS projects. For example, a 2017

survey conducted by the Pew Research Center found that two

out of five Americans have experienced online harassment [6].

Another study found 43% college students reporting being

recipients of harassing messages [7]. More than one-third

victims of those abusive online interactions reported feeling

depressed [7]. Therefore, researchers have been focusing on

automatic identification of toxic online conversations [8]–[12]

to prevent such negative incidents. Jigsaw (a unit of Google)1

is on the forefront of this research with building a public API

named the Perspective API2 to automatically score perceived

toxicity of a text. Kaggle3, in collaboration with the Jigsaw,

started a competition called ‘Toxic Comment Classification

Challenge in 2018’ 4 with the goal of building a classifier that

can classify toxic contents better than the Perspective API.

This challenge have produced high quality toxicity detectors

with AUC 5 scores (i.e., 0.988).

Since software development is a collaborative activity, toxic

conversations within a team may not only degrade relation-

ships among team members but also have a great impact on

the productivity of a developer [13]. Fear of bullying can

refrain a developer from sharing his/her opinions or discourage

a newcomer from seeking expert suggestions. Prior studies

have found developers expressing frustrations over peers with

‘prickly’ personalities [14], [15]. Toxic conversations may

not only demotivate developers but also waste valuable work

hours [16]. Since software development communities, such as

the FOSS projects, are professional communities, automated

identifications of toxic conversations from software developer

communications are crucial.

However, as prior research on building sentiment anal-

ysis tools for the Software Engineering (SE) domain has

shown [17], toxicity detectors developed for other domains

may not work well on SE conversations. An off-the-shelf tox-

icity detector may incorrectly flag some words commonly used

in the SE context as toxic (e.g., ‘junk’, ‘kill’, and ‘dump’).

To encounter this challenge, an SE specific tool has been

proposed by the CMU Strudel Lab (referred as the ‘STRUDEL

tool’ hereinafter) by combining the output of the Perspective

API [8] with the output from a customized version of the

Stanford’s Politeness detector tool [18]. Since the STRUDEL

1https://jigsaw.google.com
2https://www.perspectiveapi.com
3https://www.kaggle.com/
4https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
5Area under receiver operating characteristic curve represents ability of of

a binary classifier system as its discrimination threshold is varied.
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had a low F-score (0.57) during its limited evaluation with only

654 SE text, its practical applicability is uncertain. Therefore,

this study aims to empirically evaluate the STRUDEL tool
as well as four other state-of-the-art general purpose toxicity
detectors on a large scale SE dataset. On this goal, we

empirically developed a rubric to manually label each SE text

as either ‘toxic’ or ‘non-toxic’ and using that rubric manually

labeled two datasets of: i) 6,533 code review comments and

ii) 4,140 Gitter messages. Using these datasets, we evaluated

the five selected tools and answer the following three research

questions:

(RQ1): How do contemporary toxicity detectors perform on
an SE dataset?
Motivation: This evaluation will enable us to identify the

practical applicability of contemporary toxicity detectors

on SE conversations.

Results: None of the contemporary toxicity detectors

achieved adequate performances to justify practical appli-

cations. The F-scores of the tools included in our study

dropped more significantly on a formal SE communi-

cation dataset such as code review than on a informal

communication such as Gitter messages. The significant

disagreements between most of the tool pairs also suggest

that results of an empirical study using one of these tools

may differ significantly if we switch from one tool to

another one.

(RQ2): What are the categories of SE texts that contemporary
toxicity detectors are more likely to misclassify?
Motivation: This analysis will identify scenarios to con-

sider when developing a customized toxicity detector for

the SE domain.

Results: Most of the tools accurately identifies texts with

expletives or swear words. However, those tools fails on

words that have different meaning in the SE context.

Moreover, contemporary tools also fail on sentences ex-

pressing humility, where an author uses demeaning words

(e.g., ‘stupid’, ‘dumb’, and ‘idiot’) referring him/herself

or his/her own work.

(RQ3): Does retraining on a SE dataset improve the perfor-
mances of contemporary toxicity detectors?
Motivation: This analysis will show us the easeness or

difficulty in building a customized toxicity detector for

the SE domain.

Results: The results are highly promising with both of

our retrained models outperforming contemporary models

during 10-fold cross- validations on our SE datasets. A

large scale labeled toxicity dataset of SE interactions may

enable the development of reliable SE domain specific

toxicity detectors.

The primary contributions of this paper are:

• An empirically developed rubric to manually label the

toxicity of SE conversations.

• Two manually labeled toxicity datasets from the SE

domain, with one dataset including 6,533 code review

comments and the other dataset including 4,140 Gitter

messages.

• An empirical evaluation of five contemporary toxicity

detectors on two SE datasets.

• Empirical evidence depicting the possible development

of a reliable toxicity detector for the SE domain by

retraining exiting models on a SE dataset.

• A set of guidance for SE researchers on building cus-

tomized toxicity detectors for the SE domain.

• Enabling replication: To enable future studies, we

have made our dataset and results available online at:

https://github.com/WSU-SEAL/toxicity-dataset

Paper organization: The remainder of this paper is orga-

nized as following. Section II provides a brief background on

prior research in identifying online toxic contents. Section III

details our research methodology. Section IV describes the

results of our empirical evaluation. Section V discusses the

considerations for building an SE domain specific toxicity

detector. Section VI discusses the threats to validity of our

findings. Finally, Section VII provides the future direction of

our work and concludes this paper.

II. BACKGROUND

Following subsections provide a definition of toxic contents

in the context of the SE domain and briefly describe prior

research in identifying online toxic contents.

A. Toxic Contents

Toxicity analysis is a natural language classification problem

of identifying toxic contents. However, prior research had dif-

fering views on which contents should be considered as toxic.

For example, the pew research center classifies offensive name

calling, threats, and sexual harassment [6] as toxic interactions.

Zaheri et al. includes insult, verbal sexual harassment, threats,

obscene languages in their analyses of toxicity [19]. Geor-

gakopoulos et al. included personal attacks, online harassment

and bullying behaviors among toxic interactions [20]. Kurita

et al. expanded their definition of toxic contents by including

texts that can be harmful or offending to the recipient(s) [9].

The Perspective API [8] defines toxic contents as “texts that

are rude, disrespectful, or unreasonable”. Since the SE domain

consists of professional communities, we adopt the following

expansive definition of toxic contents in our analyses:

“An SE conversation will be considered as toxic, if
it includes any of the following: i) offensive name
calling, ii) insults, iii) threats, iv) personal attacks,
v) flirtations, vi) reference to sexual activities, and
vii) swearing or cursing.”

B. Prior Research on Toxicity Analysis

The Jigsaw team from Google developed the Perspective

API to identify abusive online contents, which is considered

one of the contemporary state-of-the-art tools. The models

behind the Perspective API (PPA) are trained using manual

annotations from crowd sourced human raters based on a

published guidelines [21]. Besides the toxicity model, PPA
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also provides experimental models to identify insults, pro-

fanities, identity attacks, sexually explicit contents, flirtations,

and threats in a text. However, PPA is not free from flaws, as

Hosseini et al. pointed out tricks to deceive the PPA [22].

Georgakopoulos et al. proposed a Convolutional Neural

Network (CNN) based model trained on the Jigsaw dataset

[20] and found that CNN based models performed better than

bag-of-words based models in identifying toxic texts. Recently,

researches have proposed several deep learning based toxicity

classifiers [23]–[25] and provided guidelines on improving

performances of these models.

Identifications of obfuscated or perturbed toxic words (e.g.,

‘fuc k, and ‘idoit’) have been a major limitation of toxicity

classifiers. Mishra et al. proposed a single embedding for

unseen words to classify the toxic context, which is able to

identify obfuscated and non-obfuscated words [26]. Kurita et

al. proposed a model called Contextual Denoising Autoen-

coder (CDAE) to classify toxic contents [9]. They leveraged

both character-level and contextual information in their models

to overcome the limitations of contemporary toxicity classifiers

in identifying perturbed toxic tokens (e.g., intentional typos to

evade detection).

Due to the biases among the human raters against certain

group of people (e.g., gay, lesbian, black, and muslim), toxicity

classifiers based on several dataset are biased against those

groups [27]. To overcome this challenge, Vaidya et al. pro-

posed a multi-task learning model to reduced identity biases

among toxicity classifiers [27].

Identifications of online bullying and hate speeches have

also been focuses of several prior works. Waseem and Hovy

proposed a set of 11 rules to annotate hateful tweets and

labeled more than 16K public tweets using these criteria [28].

Using this dataset, they prepared a dictionary of the most

hateful indicative words. Davidson et al. proposed a classifier

to identify both hate speeches and offensive languages [29].

Chandrasekharan et al. proposed a model named Bag of Com-

munities to identify abusive online interactions, where they

showed that models trained based on labeled data obtained

from one online community can be successfully reused to

identify abusive contents from a different community [30].

Although, toxic contents have been found among SE in-

teractions [1]–[5], most of the prior works in the SE domain

focused on identifying software developers’ sentiments [31]–

[33]. Raman et al. proposed the first SE domain specific

toxicity detector, and used that to study unhealthy interactions

among FOSS developers [16].

III. RESEARCH METHOD

Currently, the STRUDEL dataset of 654 texts [16] is the

only labeled toxicity dataset from the SE domain. Due to the

small size of the STRUDEL dataset, we decided to create a

new labeled toxicity dataset from SE interactions. Following

subsections describe our approach to select text for our dataset,

our manual labelling process, tool selection, and empirical

evaluation of the selected tools.

A. Data Source Selection

Since toxic interactions are not very frequent among FOSS

projects [16], [34], we looked into prior research and identified

following two mediums, where toxic conversations are more

likely to occur.

• Code review is a software development practice, where

a developer sends his/her changes to peers for manual

reviews. Although, code review is a formal process,

incidents of profanity or insults are not uncommon during

code reviews. [5], [34]. We selected three popular FOSS

projects (i.e., Android, Chromium OS, and LibreOffice)

as our data sources, since a recent research suggests

toxicity among code reviews of those projects [5].

• Gitter is an open-source instant messaging and chat

room system for software developers. Although Gitter is

similar to Instant Relay Chat (IRC), Gitter’s integration

with Github repositories has made it popular among

recent FOSS projects. Since prior research found toxic

interactions among FOSS IRC channels [1], [35], we

considered chat messages as one of our sources. We

selected the gitter channel of the Ethereum project 6, since

it is one of the most active channels on Gitter.

B. Data Mining

The code review repositories of the three selected projects

are managed by Gerrit7. We wrote a Python script to access

Gerrit’s REST API to mine all the publicly available code

reviews for the three projects and store the data in a MySQL

database. Using an approach similar to Paul et al. [5], we

identified the bot accounts to exclude the comments not written

by humans. We used the GitterPy8 library to connect to Gitter’s

REST API and download all the messages to our MySQL

database. Table I shows an overview of the messages mined

by our scripts from the four FOSS projects.

C. Dataset Generation

Due to the rarity of toxic interactions, a fully-randomized

selection of text from our data sources would create a highly

unbalanced dataset of less than 1% toxic texts. To overcome

this challenge, we adopted a customized stratified sampling

strategy [36] by leveraging the Google’s Perspective API. First,

we use the PPA to compute the toxicity score of each text. The

PPA score for a text varies between 0 to 1, which indicates

the probability of that text being toxic. Since a PPA score of

0.5 or above suggests a text as more likely to be ‘toxic’ than

to be ‘non-toxic’, we included all the texts with PPA scores

above 0.5. Based on this selection, we obtained 3,213 code

review texts and 1,950 Gitter messages.

Second, we divided the texts with PPA scores less than

0.5 from our two datasets into five equally spaced PPA score

groups with each group spanning an interval of 0.1. From the

code review dataset, we randomly selected 664 text from each

6https://gitter.im/ethereum/go-ethereum
7https://www.gerritcodereview.com/
8https://github.com/myuz/GitterPy
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TABLE I
AN OVERVIEW OF THE MESSAGES MINED BY OUR MINING SCRIPTS

Project Data Source Time period Total messages Toxic messages*
Android Code review: https://android-review.googlesource.com/ December 2008 to June 2019 152,065 647
Chromium OS Code review: https://chromium-review.googlesource.com/ April 2011 to March 2020 1,176,642 2,485
LibreOffice Code review: https://gerrit.libreoffice.org/ March 2012 to June 2019 12,273 81
Ethereum Gitter: https://gitter.im/ethereum/go-ethereum June 2014 to March 2020 122,355 1,950
*As classified by the Perspective API

group. For example, we randomly selected 664 code review

comments with a PPA score between 0 to 0.1, 664 texts with

a PPA score between 0.1 to 0.2 and so on. Using this stratified

sampling, we selected additional 3,320 code review comments

that are classified as ‘non-toxic’ by PPA. Similarly, we selected

additional 2,190 gitter messages (i.e., 438 messages from each

group) with PPA scores less than 0.5.

In addition to these two datasets, we randomly sampled

2,000 ‘non-toxic’ and ‘1,000’ toxic texts from the labeled

Jigsaw test dataset [37]. We use this dataset of 3,000 texts

to evaluate baseline performances of the selected tools on a

non-SE dataset.

D. Manual Labeling

During the first stage of our manual labeling, we focused

on developing a rubric to manually label the toxicity class

of the selected texts. Our initial rubric was based on the

guidelines published by the Conversation AI team [21]. Two of

the authors independently went through 1,000 texts to prepare

a set of rules. Then, we had a discussion session to create

a unified set of rules for labeling. Using this set of rules,

two of the authors independently labeled all the selected texts.

Table II shows the set of rules with examples taken from our

dataset.

After the independent manual labeling, we compared the

labels from the two raters to identify conflicts. Out of the 6,533

comments from the code review dataset, the two raters agreed

on 5,950 comments (i.e., 91.1%). On the Gitter dataset, out of

the 4,140 messages, the raters agreed on 3,730 messages (i.e.,

90.1%). We also measured the level of agreement between the

two raters using Cohen’s Kappa ( κ) [38], which was estimated

as 0.727 for our code review dataset and as 0.781 for our Gitter

dataset. Kappa (κ) values are commonly interpreted as follows:

values ≤ 0 as indicating ‘no agreement’ and 0.01–0.20 as

‘none to slight’, 0.21–0.40 as ‘fair’, 0.41– 0.60 as ‘moderate’,

0.61–0.80 as ‘substantial’, and 0.81–1.00 as ‘almost perfect

agreement’. Therefore, the level of agreement between the

two raters during our manual labeling can be considered as

‘substantial’.

Finally, we had discussion sessions to review the disagree-

ments and come up with an agreed upon rating for each of

the texts with a conflicted rating. After the conflict resolution

process, we found 20% ‘toxic’ texts in our code review dataset,

while the Gitter dataset had 35.4%. Since real-time chats are

bit more informal than code reviews, a higher ratio of toxic

texts in the Gitter dataset may not be surprising. Table III

provides a brief overview of the Jigsaw sample dataset as well

as the two SE datasets after the completion of our manual

labeling.

E. Tool Selection

We selected total five tools for evaluation. We selected the

Perspective API [8], since it has been widely used, and is con-

sidered one of state-of-the-art tool for toxic text classification.

The STRUDEL tool [16] was selected, since it is the only SE

domain specific toxicity detector. The remaining three tools

for evaluation were selected based on following two criteria.

1) The design and evaluation of the tool was published as a

research paper.

2) The source code of the tool is publicly available for

download and evaluation.

Although, we noticed an influx of toxicity detector pub-

licly available on the Github (https://github.com/topics/toxic-

comment-classification) as a part of the 2018 Kaggle clas-

sification challenge [39], most of those tools fail our first

inclusion criteria. In the following subsections, we provide

a brief overview of the five tools selected for our analyses.

1) Perspective API (PPA): The developers from the

Google’s Conversational AI and Jigsaw developed the Perspec-

tive API to identify abusive online contents [8]. The primary

goal of the PPA is to develop a online platform to reduce the

toxic comments and create spaces for healthy conversations9.

The Perspective API currently provides six different models

to rate the level of toxicity, profanity, insult, identity attack,

threat, sexual explicit from a text. The PPA scores for a text

from the six models vary from 0 to 1, which indicate the

the probability of that text belonging to a particular category

(e.g., toxic, threat, or insult) [40]. We use the publicly available

REST API to compute PPA scores for each text in our datasets.

Using the score from the PPA ‘toxicity model’, we classify a

text as toxic if it has a PPA score of 0.5 or higher.

2) STRUDEL Toxicity Detector (STRUDEL): Raman et al.

proposed the first toxicity detector for the SE domain recently

[16]. They observed that many texts were incorrectly classified

as ‘toxic’ by the PPA due to the occurrences of words that

are considered ‘toxic’ in non-SE context but are included

in the technical SE vocabulary (e.g., kill, abort, and die).

They developed an automated pre-processing model to identify

words that are significantly over-represented in a SE dataset

compared to general English and replace those words with

more neutral filler words. They used a modified version of

the Stanford’s politeness detector tool [18] to identify the

9https://jigsaw.google.com/
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TABLE II
SET OF RULES FOR CLASSIFYING A TEXT AS EITHER ‘TOXIC’ OR ‘NON-TOXIC’ WITH EXAMPLES TAKEN FROM OUR DATASET

# Rule Rationale Example*
Rule 1: Inclusion of a profane or curse words in

a sentence would be marked as ‘toxic’.
Profanities are the most common
sources of online toxicities.

“we don’t want to fuck 64-bit bit up
like 32-bit was fucked.”

Rule 2: Inclusion of an acronym, that refers
to expletive or swearing, in a sentence
would be marked as ‘toxic’.

Sometimes people use acronyms of pro-
fanities, which are equally toxic as its’
expanded form.

“wtf is going on with this nonstop?”

Rule 3: Insult to another person or person’s
work would be marked as ‘toxic’.

Insulting another developer may create
a toxic environment and should not be
encouraged.

“YOU MUST BE A BIG FOOL”

Rule 4: Attacking a person’s identity (e.g., race,
religion, nationality, gender or sexual
orientation) would be marked as ‘toxic’.

Identity attacks are considered toxic
among all categories of online conver-
sations.

“you are twice as smart as a typical
stupid American consumer, you get to
have an unlimited number of children”

Rule 5: Threatening another person or a com-
munity would be marked as ‘toxic’.

Threats may stir hostility between two
developers and force the the recipients
leave the community.

“One of these days I’m going to slap
you @****”

Rule 6: Both implicit or explicit References to
sexual activities would be marked as
‘toxic’.

Implict or explicit references to sexual
activities may make some developers,
particularly females, uncomfortable and
make them leave a conversation.

“i know but...well its like masturbating
vs sex you see what i mean ”

Rule 7: Flirtations would be marked as ‘toxic’. Flirtations may also make a developer
uncomfortable and make a recipient
avoid the other person during future
collaborations

“Just like how I told that woman I
thought she looked pretty. ”

Rule 8: If a demeaning word (e.g., ‘dumb’,
‘stupid’, ‘idiot’, ‘ignorant’) refers to
either the writer him/herself or his/her
work, the sentence would not be
marked as ‘toxic’, if it does not fit any
of the first seven rules.

It is common in SE community to use
those word for expressing their own
mistakes. In those cases, the use of
those toxic words to himself/herself
does not make toxic meaning.

“stupid me, my editor shows them the
same color and tricks me every time.”

Rule 9: A sentence, that does not fit rules 1
through 8, would be marked as ‘non-
toxic’.

General non-toxic comments. “you can delete this main logic as the
wrapper.py handles it for you.”

* Examples are provided verbatim, to accurately represent the context. We did not censor any text, except omitting the reference
to a person’s name.

TABLE III
AN OVERVIEW OF THE THREE DATASETS

Dataset # total texts # toxic # non-toxic
Jigsaw Sample 3,000 1,000 2,000
Code Review 6,533 1,310 5,223
Gitter Ethereum 4,140 1,468 2,672

politeness score of the pre-processed text. Finally, they used

an SVM classifier to classify the text as either ‘toxic’ or ‘non-

toxic’ by combining the PPA score of the unmodified text with

the politeness score of the pre-processed text.

The STRUDEL tool was evaluated using a dataset of

654 issue comments mined from Github, where only 167

comments were labeled as ‘toxic’. During their evaluation it

achieved a precision of 0.91 and a recall of 0.42 of their test

dataset. Moreover, on a dataset of 100,000 randomly sampled

GitHub issues it achieved 50% precision in identifying ‘toxic’

comments. In our evaluation, we use the pretrained STRUDEL

model available on Github.

3) Deep Pyramid Convolutional Neural Networks
(DPCNN): Johnson and Zhang proposed a deep neural

network based model for toxic text classification, which they

named as Deep Pyramid Convolutional Neural Networks

(DPCNN) [41]. DPCNN outperformed prior state-of-the-

art models on six benchmark datasets in both sentiment

and toxicity classification. A DPCNN implementation

also performed well in the 2018 Kaggle classification

challenge [39] by achieving an AUC score of 0.98. Similar

to the PPA, DPCNN also provides the probability of a text

being toxic from 0 to 1. In our evaluation, we use a DPCNN

model trained using the Jigsaw dataset. Similar to the PPA

scores, we used the threshold of 0.5 to consider the DPCNN

classification as either toxic or non-toxic.

4) BERT with fast.ai (BFS): Devlin et al. proposed a pre-

trained deep bidirectional representations from unlabeled text

language model called Bidirectional Encoder Representations

from Transformers (BERT) [42]. BERT based models are

currently considered as the state-of-arts in natural language

processing (NLP) classification tasks . Kurita et al. proposed a

toxicity classification model [9] by fine tuning a BERT model

for fast.ai library10 for the 11. A BFS model trained using the

Jigsaw dataset achieved one of the highest public AUC scores

10https://www.fast.ai/
11https://www.kaggle.com/keitakurita/bert-with-fastai-example
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in the Kaggle competition [39].

In our evaluation, we use the publicly available python

implementation of the BFS kernel 12. We retrain a BFS model

with the Jigsaw dataset and were able to achieve the an AUC

score of 0.9853 (i.e., same as the listed public score). As BFS

also outputs the probability of a text being toxic from 0 to

1, we use the threshold of 0.5 to classify each text as either

‘toxic’ or ‘non-toxic’ based on its BFS score.

5) Hate Speech Detection (HSD): Davidson et al. proposed

an automated multi-class classifier to classify a text as either

a hate speech, or an offensive language or neither [29]. The

HSD model was classified using a dataset of 25K manually

labeled tweets and achieved a precision 0.91, recall of 0.90,

and F1 score of 0.90 during five-fold cross validations. During

our evaluation, we use the pretrained HSD models and classify

a text as ‘toxic’ if it was classified as either ‘a hate speech’

or ‘an offensive language’ by the HSD model.

F. Evaluation Metrics

In our evaluation, we use the following five measures to

compare the performances of the tools on our SE datasets.

• Accuracy: Accuracy is the ratio of texts that were

correctly classified by a tool.

• Precision: The ratio between the number of toxic texts

that are correctly classified by a tool and the number of

of texts that are marked as toxic by the same tool.

• Recall: The ratio between the number of toxic texts that

are correctly classified by a tool and the number of toxic

texts in the dataset.

• F-score: The harmonic mean of precision and recall.

• Cohen’s Kappa (κ): The level of agreement between a

tool’s classification and our manual labeling as measured

using Cohen’s Kappa (κ) [38].

We also calculate the level of agreement between each pair

of tools using the Cohen’s Kappa (κ) [43] to determine how

obtained results would vary if a different tool was selected for

analyses.

IV. RESULTS

The following subsections present the results of the three

research questions introduced in the Section I.

A. RQ1: How do Contemporary Toxicity Detectors Perform
on an SE Dataset?

Table IV shows the precision, recall, F-score, and accuracy

of the five tools, when evaluated on our three datasets. On the

baseline Jigsaw sample test dataset, DPCNN achieves the best

precision, F-score, and accuracy, while STRUDEL achieved

the best recall. Four out of the five tools (i.e., except HSD)

achieved ‘substantial’ agreement with the human raters.

On the code review dataset, the STRUDEL tool, which

is customized for the SE domain, achieves the best recall.

However, due to lower precision than the PPA, STRUDEL

falls behind in terms of both F-score and accuracy. Although,

12https://www.kaggle.com/keitakurita/bert-with-fastai-example/

HSD had the the second highest precision among the five tools

on the code review dataset, it also had the lowest F-score

due to its failure to identify (i.e., false negatives) toxic texts

that do not express hate speeches. DPCNN had the highest

precision, accuracy and kappa on the code review dataset.

The kappa values suggest that the five tools achieved at best

‘Fair’ agreements with the human raters and therefore may not

suitable to identify toxic texts from code review interactions.

All the five tools performed better on the Gitter dataset

than each performed on the code review dataset, since the

Gitter dataset has higher ratios of toxic comments as well as

higher number of messages with profanities. Similar to the

code review dataset, the STRUDEL achieved the best recall

on the Gitter dataset but falls behind the PPA in terms of both

Accuracy and F-Score. Both the BFS and the HSD achieved

high precisions, but failed to achieve high F-scores due to large

number of false negatives. The kappa values suggest that four

out of the five tools achieved ‘moderate’ agreements with the

human raters, which can be considered as improvements over

the performances achieved by those tools for the code review

dataset.

By comparing each tools performance on the two SE

datasets against its performance on the Jigsaw sample, we

noticed significant degradations of F-scores. Both precisions

and recalls of each tool dropped by more than 0.10 on the

two SE datasets. Among the five tools, PPA provides the best

F-scores on both of our SE datasets and may be considered as

the baseline for building SE domain specific toxicity detectors.

Table V shows the agreements between each pair of tools

measured using the Cohen’s Kappa (κ). Since we have five dif-

ferent tools, there are ten possible pairings. The highest level of

agreements were seen between the PPA and STRUDEL pairs

on the both SE datasets. Based on the κ values, agreements

between these two tools can be considered as ‘substantial’.

Since STRUDEL uses PPA scores as an input for classifi-

cation, ‘substantial’ agreements between these two tools are

not surprising. The only other pair that showed ‘substantial’

agreement is the DPCNN-BFS pair on the Gitter dataset, since

both DPCNN and BFS models are trained using the same

dataset (i.e., Jigsaw toxicity dataset), their agreements on the

Gitter dataset may not be surprising, while their ‘moderate’

level of agreement on the code review dataset deserves more

investigation. The lowest level of agreement was obseved

between the STRUDEL-HSD pair. These results suggest that

if an empirical investigation of toxic texts are conducted using

one of these tools, the results may be different if we select one

of the different tools, except for switching between STRUDEL

and PPA may still yield the same results.
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TABLE IV
PERFORMANCE OF THE FIVE TOXICITY ANALYSIS TOOLS ON THE THREE DATASETS

Dataset Tools Precision (p) Recall(r) F-Score (f ) Accuracy (A) Kappa (κ)

Jigsaw Sample (baseline)

PPA 0.762 0.986 0.858 0.893 0.775
STRUDEL 0.734 0.990 0.843 0.877 0.746
DPCNN 0.896 0.829 0.861 0.911 0.796
BFS 0.887 0.834 0.859 0.909 0.793
HSD 0.889 0.427 0.577 0.791 0.461

Code Review

PPA 0.397 0.762 0.522 0.720 0.351
STRUDEL 0.347 0.861 0.495 0.648 0.294
DPCNN 0.708 0.285 0.406 0.833 0.33
BFS 0.663 0.253 0.366 0.824 0.287
HSD 0.705 0.051 0.095 0.805 0.071

Gitter Ethereum

PPA 0.707 0.806 0.753 0.813 0.604
STRUDEL 0.626 0.880 0.732 0.771 0.542
DPCNN 0.901 0.511 0.652 0.806 0.532
BFS 0.892 0.524 0.660 0.809 0.539
HSD 0.978 0.238 0.382 0.728 0.283

TABLE V
LEVEL OF AGREEMENTS BETWEEN THE TOOL PAIRS ON OUR SE DATASETS

Dataset Level of agreement between tool pairs (κ)
STRUDEL DPCNN BFS HSD

Code Review

PPA 0.777 0.225 0.221 0.033
STRUDEL 0.156 0.151 0.023
DPCNN 0.595 0.18
BFS 0.142

Gitter Ethereum

PPA 0.812 0.497 0.504 0.236
STRUDEL 0.383 0.39 0.168
DPCNN 0.759 0.49
BFS 0.481

Finding 1: While contemporary toxicity detectors have
moderate agreements with human raters on identifying toxic
texts from informal conversations such as chat messages,
they perform poorly on a more formal SE conversation such
as code reviews. Since only one out of the ten possible pairs
had substantial agreements with each other, the results of
an empirical study may significantly differ, if we switch from
one tool to another from those nine low agreement pairs.

B. RQ2: What are the Categories of SE Texts that Contempo-
rary toxicity Detectors are More Likely to Misclassify?

We conducted secondary investigations to identify cases

where most of the tools misclassified to identify the challenges

in developing an SE domain specific toxicity detector.

All the tools used in our study are based on supervised

models, pretrained with a large labeled datasets. However,

many of the words has different meanings in the SE context

than in general English. Most of the tools failed for such

words. In the following we list such words with examples.

• kill: is frequently used during code reviews and developer

chats to suggest killing a process or simply removing

a code snippet. For example, “yeah, they don’t seem to
be needed, so let’s kill them.”, suggests removing some

unnecessary code snippet, which was misclassified as

toxic by most of the tools.

• execute: refers to running a process or application in the

SE domain. For example,“ Any program executed by any

kernel thread, including usermodehelper, from rootfs will
switch to init?”, refers to running a program, but was

incorrectly classified as toxic.

• die, dead: Both ‘die’ and ‘dead’ refers to state of program

execution or code snippets and are often misclassified by

off-the-shelf toxicity detectors. For example, “Remove the
old, dead code.”

• garbage: is another word that can be used both in toxic

and non-toxic ways. For example, in “initialize init pid
to -1 here so it doesn’t have garbage in it”, garbage can-

not be classified as toxic. However, a developer referring

another developer’s code as ‘garbage’ would be toxic. We

noticed ‘garbage’ used in non-toxic contexts for most of

the cases and were misclassified by the tools.

• dummy: is often used to refer to placeholder files or

objects. “What is it used for? An empty dummy file should
work.”, is an example of misclassification of a text with

this word.

• junk: Under slang terms, ‘junk’ refers to male privates.

However, in the SE domain ‘junk’ often refers to useless

objects and can be misclassified. For example, “I’d like
to have that here too, since input may have junk data
after a valid CBOR.”

• dirty: In the SE domain, ‘dirty’ often refers to a modified

file or memory location. A misclassification with the word

dirty:, “why not place this in the dirty bits iteration? (with
a comment on why we need it for D3D11)”.

• trash: refers to removing file, code snippet or objects. A

misclassified example is, “You really don’t need to derive
from std::less¡¿. If anything, you should be deriving
from std::binary function, but it is really not needed for
std::set to work correctly, so I would just trash that base
class.”

• daemon: refers to a computer program that runs as a

background process in the SE domain. However, in a non-

SE domain, it may refer to something supernatural and

therefore, was classified as toxic. An example of such

occurrence is : “Based on the old version, it looks like
lxc should be built even if USE=daemon is not sent. ...”
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• naked: is usually considered as a toxic word with a

sexually explicit reference. However, in the C program-

ming language a ‘naked pointer’ refers to pointers that

can be used to point to another object. Texts with the

word ‘naked’ was frequently misclassified during code

reviews. For example, “For now, let’s keep it like this,
there’s a discussion going on what to do with the naked
C++ pointers.”

• dump: can be used as a slang to indicate ‘the act of defe-

cation’. However, in the SE context dump often refers to

storing data. For example, an example of misclassification

with dump is: “Use json.dump, json.load instead of doing
your own string parsing. ...”

• stupid, dumb, idiot, fool, ignorant: Most of the clas-

sifiers marked all the texts with these words as toxic.

However, during both code reviews as well as Gitter

chats, developers frequently used those words to express

humility. For example, “Maybe a stupid question: where’s
this variable defined?”.

• CAPITALIZED ACRONYMS: In C or C++ constant

variables are often declared in all caps. References to

code segments are often included in code reviews. For

example, “Make this another DCHECK.” Some of the

tools incorrectly marked unknown capitalized acronyms

as toxic.

Finding 2: Many of the words, that are used under toxic
contents in non-SE domains, have different meanings in the
SE context, are more frequently misclassified by the toxicity
detectors.

C. RQ3: Does Retraining on a SE Dataset Improve the
Performances of Contemporary Toxicity Detectors?

While we intended to to reevaluate all the five tools after

retraining those on a SE dataset, it was feasible for us to retrain

only two models (i.e., DPCNN and BFS) with our dataset. We

could not retrain the PPA, since its source code is proprietary.

STRUDEL uses the PPA model and the dataset to customize

the Stanford politeness detector for STRUDEL is not publicly

available. HSD is a multiclass model with three classes (‘hate

speech’, ‘offensive’, and ‘neither’). Since our datasets are not

labeled accordingly, we excluded the HSD model.

We evaluated the the models using 10-fold cross-validations.

Table VI shows the average performances of the two models

after retraining on our datasets. Both of the models achieves

significant performance improvements after retraining on our

SE dataset. The DPCNN based model achieved an F-Score

of 0.88 on the code review dataset, which is better than its

baseline performance (i.e., F-Score of 0.86 on the Jigsaw

sample). But it under-performed on the Gitter dataset with an

F-Score of 0.731. On the other hand, the BFS based model’s

F-Score of 0.860 on the Gitter dataset was almost similar as

its baseline performance (F-Score of 0.859). However, BFS

under-performed on the code review dataset with an F-Score

of 0.731.

Finding 3: Both models achieved significant performance
boosts after retraining on our SE datasets. Two out of
the four models beat its’ baseline F-Scores achieved on a
non-SE dataset. A large scale labeled toxicity dataset of
SE interactions may enable developing SE domain specific
toxicity detectors that can be used for identifying toxic texts
from real-world SE interactions.

V. IMPLICATIONS

In this paper, we evaluated five contemporary toxicity

detectors on two SE datasets. Following are the key lessons

obtained from this study.

1) Off-the-shelf tools are reliable in identifying profan-
ities. Profanities are the most common sources of online

toxicities. We found most of the tools highly reliable

in flagging texts with profanities. Therefore, if an SE

community only wants to flag profane languages, off-the-

shelf tools such as PPA can be useful with its profanity

detection model.

2) Off-the-shelf tools are not reliable on SE datasets. Al-

though, PPA and STRUDEL show moderate performance

on identifying toxic texts from Gitter messages, their

performances are not reliable on formal conversations

such as code reviews. Therefore, off-the-shelf tools must

be evaluated for reliability on a dataset drawn from the

study context before their application.

3) Retraining off-the-shelf tools on a SE dataset sig-
nificantly improves performance. While we conducted

a preliminary investigation by retraining two of the off-

the-shelf tools on our SE dataset, the results are highly

promising. We believe, if we retrain contemporary models

using a larger and more robust SE dataset than the

one used in this study and add SE domain specific

preprocessing, we can develop a reliable toxicity classifier

for the SE domain.

4) SE domain specific preprocessing may improve per-
formances. We noticed that several misclassifications

from the existing tools were due to code snippets included

in developer communications. Since SE domain specific

sentiment analysis tools also recommend filtering out

code snippets [31], we believe that preprocessing steps

to identify and remove code snippets may improve the

performances of SE domain specific toxicity detectors.

5) Excluding SE domain specific words may cause false
negatives. The results of RQ2(Section IV-B) illustrated

several words that may have different meaning in an SE

context. While using the approach adopted by Raman et

al. [16], we can replace these words with a more neutral

words, and reduce those misclassifications, this approach

may also generate false negatives if these words are truly

used to express a toxic opinion. For example, following

lists shows toxic usage of those words from our dataset:
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TABLE VI
PERFORMANCE OF THE TOXICITY DETECTORS AFTER RETRAINING ON OUR SE DATASET

Dataset Tools Precision (p) Recall(r) F-Score (f ) Accuracy (A) Kappa (κ)

Code Review
DPCNN 0.880 0.890 0.880 0.920 0.817
BFS 0.780 0.688 0.731 0.898 0.669

Gitter Ethereum
DPCNN 0.840 0.670 0.740 0.910 0.692
BFS 0.838 0.884 0.860 0.892 0.773

• garbage: “Why you changed this to %ecx? it is garbage
here.”

• kill: “go kill yourself ”

• junk: “so I don’t have to clean up my junk after myself
”

• dirty: “Only if you promise to talk dirty to me”

• dump: “I wouldn’t recommend telling girls they are
pretty, I mean if it’s the first or second thing you say
your intentions are clear, you just want sex, and then
they dump you.”

• die: “well the US can go and die”

• dead: “... should just move over to ethereum immedi-
ately... no point in flogging a dead horse”

6) A reliable toxicity detector must identify the target
of words to identify expressions of humility. Sentences

using the words: ‘idiot’, ‘stupid’, ‘dumb’, ‘ignorant’,

and ‘fool’ to express humility were often misclassified

by the contemporary toxicity detectors. We found both

toxic and non-toxic usages of those words. Since during

expressions of humility, these words refer to the author

him/her self or his/her works, a reliable toxicity classifier

must identify the target of those words to identify toxic

contexts from non-toxic ones.

VI. THREATS TO VALIDITY

The first threat to validity for this study is our selection

of data sources which come from four FOSS projects. While

these projects represent four different domains, many domains

are not represented in our dataset. Moreover, our projects

represent some of the top OSS projects with organized gover-

nance. Therefore, several categories of highly offensive texts

are underrepresented in our datasets.

Second, our stratified sampling strategy was based on the

scores provided by the PPA. Although, we manually verified

all the texts classified as ‘toxic’ by the PPA, we randomly

selected only 5,510 texts that had PPA scores of less than

0.5. Among those texts, we identified 513 toxic texts (9.3%).

Therefore, if the PPA misclassified some categories of ‘toxic’

comments and also our random selections missed those, in-

stances of such texts may be missing in our datasets.

Third, we accepted the default parameters for the selected

tools and did not use parameter tuning to improve perfor-

mances. Therefore, some of the tools may have achieved better

performances on our datasets through parameter tuning.

Finally, although we have selected a diverse set of tools

trained on different datasets, we may be missing some tools

that could have achieved a better performance on our datasets.

To enable evaluations of more tools on our datasets, we had

made those publicly available on a Github repository.

VII. CONCLUSION

In this paper, we empirically evaluated STRUDEL, the

only SE domain specific toxicity detector, as well as four

other state-of-the-art general purpose toxicity detectors on two

labeled SE datasets. We empirically developed a rubric to

manually label toxic SE interactions, and using this rubric,

we manually labeled a dataset of 6,533 code review comments

and 4,120 Gitter messages.

The results of our analyses suggest that none of the contem-

porary toxicity detectors could achieve adequate performances

to justify practical applications. The performances of the tools

included in our study dropped more significantly on a formal

SE communication dataset such as code review than on a

dataset of informal communication such as Gitter messages.

The significant disagreements between most of the tool pairs

also suggest that results of an empirical study using one of

these tools may differ significantly if we switch from one

tool to another one. One of the primary limitations of existing

tools are their failures to identify non-toxic contexts of certain

words that are commonly used in toxic contexts in a non SE-

domain but may have different meanings in the SE domain.

Sentences with source code snippets and with the words, such

as: ‘idiot’, ‘stupid’, ‘dumb’, ‘ignorant’, and ‘fool’ to express

humility were also frequently misclassified. We retrained two

of the models from our study on our SE dataset and obtained

highly promising results with two out of the four models

beating its’ baseline F-Scores obtained on a non-SE dataset.

These results suggest that the development of a highly reliable

SE domain specific toxicity detector is feasible by retraining

existing models on a large-scale and robust labeled dataset of

SE interactions.

Based on our investigations, we have identified several key

lessons that may help researchers in developing an SE domain

specific toxicity detector. The rubrics developed in this study to

manually label toxic SE interactions as well as the two labeled

datasets, which are publicly available, will be also helpful. The

future direction for this research include: i) the development

of a large-scale and robust labeled dataset, ii) the development

and evaluation of SE domain specific text preprocessing steps

to improve the performances of toxicity classifiers, and iii) the

development of a reliable toxicity classifier for the SE domain.
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