
Wayne State University Wayne State University 

Wayne State University Dissertations 

January 2024 

Identification And Mitigation Of Toxic Communications Among Identification And Mitigation Of Toxic Communications Among 

Open Source Software Developers Open Source Software Developers 

Jaydeb Sarker 
Wayne State University 

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations 

Recommended Citation Recommended Citation 
Sarker, Jaydeb, "Identification And Mitigation Of Toxic Communications Among Open Source Software 
Developers" (2024). Wayne State University Dissertations. 4061. 
https://digitalcommons.wayne.edu/oa_dissertations/4061 

This WSU Access is brought to you for free and open access by DigitalCommons@WayneState. It has been 
accepted for inclusion in Wayne State University Dissertations by an authorized administrator of 
DigitalCommons@WayneState. 

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F4061&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/4061?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F4061&utm_medium=PDF&utm_campaign=PDFCoverPages


IDENTIFICATION AND MITIGATION OF TOXIC COMMUNICATIONS AMONG
OPEN SOURCE SOFTWARE DEVELOPERS

by

JAYDEB SARKER

DISSERTATION

Submitted to the Graduate School,

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2024

MAJOR: COMPUTER SCIENCE

Approved By:

———————————————————–
Advisor Date

———————————————————–

———————————————————–

———————————————————–



DEDICATION

Dedicated to my mother Minati Rani Sarker, and father Jagadish Chandra Sarker,

my siblings, and my wife.

ii



ACKNOWLEDGEMENTS

I sincerely acknowledge the support and continuous guidelines from my supervisor, Dr.

Amiangshu Bosu. My doctoral journey would not have been smooth without his continu-

ous support and guidelines.

I am also grateful to Professor Dr. Ming Dong, for his support in deep learning concepts

during my research and as a dissertation committee member. I sincerely thank my other

dissertation committee members, Dr. Suzan Arslanturk and Dr. Gias Uddin, who provided

valuable feedback. Dr. Steven R. Wilson supported me by providing valuable information

while working on Natural Language Processing in my Software Engineering research.

Moreover, I am thankful to my lab colleague Asif Kamal Turzo, who joined the lab

simultaneously and worked on several projects together. Dr. Rajshakhar Paul supported

me a lot during the initial years of my Ph.D. Sayma Sultana is my colleague, and we have

worked together on several projects. I want to remember the difficult days during my

Ph.D. when COVID-19 started in Michigan in 2020. However, with the engagement of my

roommates and other Wayne State University (WSU) friends, I recovered from the trauma

of those lockdown days for COVID-19. I took several graduate-level courses at WSU that

broadened my knowledge, and I am grateful to those faculty members. My parents, elder

brother, and siblings inspired me to start my Ph.D. journey. I can not express how helpful

they are from my childhood. My beloved wife, Tamalika Saha, came to the USA during

the third year of my Ph.D. She supported me a lot by managing many household works.

Finally, I would like to thank the Department of Computer Science and Graduate School

at Wayne State University for its financial support.

iii



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Background and Related Works . . . . . . . . . . . . . . . . . . . . . . 8

2.1 What constitutes a toxic communication? . . . . . . . . . . . . . . . . . . . . 8

2.2 Toxic communications in FOSS communities . . . . . . . . . . . . . . . . . . 9

2.3 State of the art toxicity detectors . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Toxic span detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Contexts and consequences of anti-social behaviors in FOSS . . . . . . . . . 14

Chapter 3 Automated Identification of Toxic Code Reviews Using ToxiCR . . . . . 16

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Supervised machine learning algorithms . . . . . . . . . . . . . . . . 19

3.2.1.1 Classical ML algorithms: . . . . . . . . . . . . . . . . . . . . 20
3.2.1.2 Ensemble methods: . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1.3 Deep neural networks: . . . . . . . . . . . . . . . . . . . . . 21
3.2.1.4 Transformer model: . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Word vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2.1 Tf-Idf: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



3.2.2.2 Word2vec: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2.3 GloVe: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2.4 fastText: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2.5 BERT: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Tool Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Conceptualization of Toxicity . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Training Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2.1 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2.2 Stratified sampling of code review comments . . . . . . . . 28
3.3.2.3 Manual Labeling . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2.4 Dataset aggregation . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3.1 Mandatory preprocessing . . . . . . . . . . . . . . . . . . . 32
3.3.3.2 Optional preprocessing . . . . . . . . . . . . . . . . . . . . . 34

3.3.4 Word Vectorizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.5 Architecture of the ML Models . . . . . . . . . . . . . . . . . . . . . . 36

3.3.5.1 Classical and ensemble methods . . . . . . . . . . . . . . . 36
3.3.5.2 Deep Neural Networks Model . . . . . . . . . . . . . . . . . 37
3.3.5.3 Transformer models . . . . . . . . . . . . . . . . . . . . . . 40

3.3.6 Model Training and Validation . . . . . . . . . . . . . . . . . . . . . 41

3.3.7 Classical and ensembles . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.8 DNN and Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.9 Tool interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Experimental Configuration . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Baseline Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.3 How do the algorithms perform without optional preprocessing? . . . 49

3.4.3.1 Classical and Ensemble (CLE) algorithms . . . . . . . . . . . 51
3.4.3.2 Deep Neural Networks (DNN) . . . . . . . . . . . . . . . . . 51
3.4.3.3 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.4 Do optional preprocessing steps improve performance? . . . . . . . . 52

v



3.4.5 How do the models perform on another dataset? . . . . . . . . . . . 56

3.4.6 What are the distributions of misclassifications from the best per-
forming model? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.7 General errors (GE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.7.1 SE domain specific words (SE): . . . . . . . . . . . . . . . . 59
3.4.7.2 Self deprecation (SD): . . . . . . . . . . . . . . . . . . . . . 59
3.4.7.3 Bad acronym (BA) . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.7.4 Confounding contexts (CC) . . . . . . . . . . . . . . . . . . 60

3.5 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.1 Internal validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.2 Construct validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.3 External validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.4 Conclusion validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 4 ToxiSpanSE: An Explainable Toxicity Detection in Code Review Com-
ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1.1 Dataset Selection . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1.2 Dataset Annotation . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1.3 Inter-annotator Agreement . . . . . . . . . . . . . . . . . . 73
4.2.1.4 Conflict Resolution and Ground Truth . . . . . . . . . . . . 75

4.2.2 Tool Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2.2 IO Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2.3 Lexicon Based Model . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2.4 Transformer based model . . . . . . . . . . . . . . . . . . . 79
4.2.2.5 Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . 81

vi



4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.2.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.2.2 Threshold Selection . . . . . . . . . . . . . . . . . . . . . . 86

4.3.3 Results with optimal threshold . . . . . . . . . . . . . . . . . . . . . . 88

4.3.4 Error Analysis from the best model . . . . . . . . . . . . . . . . . . . 89

4.3.4.1 Partial Disagreement . . . . . . . . . . . . . . . . . . . . . . 89
4.3.4.2 False Negatives . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Chapter 5 The Landscape of Toxicity: An Empirical Investigation of Antisocial Be-
haviors on GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 Project Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.2 Dataset preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.3 Toxicity classification scheme . . . . . . . . . . . . . . . . . . . . . . 103

5.2.4 Automated identification of toxic comments . . . . . . . . . . . . . . 104

5.2.5 Manual categorization of toxic comments . . . . . . . . . . . . . . . . 105

5.2.6 Attribute selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.7 Attribute calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.8 Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.8.1 Multinomial Logistic Regression for RQ2 . . . . . . . . . . . 111
5.2.8.2 Bootstrapped Logistic Regression for RQ3 and RQ4 . . . . . 113

vii



5.2.8.3 Correlation and redundancy analysis . . . . . . . . . . . . . 114
5.2.8.4 Model analysis . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 RQ1: Nature of toxicity in PR Review Comments . . . . . . . . . . . 115

5.3.2 RQ2: Project characteristicss . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.3 RQ3: Pull request context . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.4 RQ4: Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Comparison with prior SE studies . . . . . . . . . . . . . . . . . . . . 123

5.4.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5.1 Internal Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5.2 Construct Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5.3 External Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5.4 Conclusion Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Chapter 6 Overall Conclusion and Future Direction . . . . . . . . . . . . . . . . . 130

6.1 Key Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1.1 A customized toxicity detector for SE domain . . . . . . . . . . . . . 130

6.1.2 An explainable toxicity detector for Code Review comments . . . . . 131

6.1.3 A large-scale empirical investigation of toxicity on GitHub Pull Re-
quests (PR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Notion of Toxicity according to diverse demographic factors . . . . . 132

viii



6.2.2 Detoxification among the developer’s textual communication . . . . . 133

6.2.3 Promoting politeness among developers’ interaction . . . . . . . . . . 133

Chapter 7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1 Journal Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Refereed Conference Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3 Short Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Autobiographical Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

ix



LIST OF TABLES

Table 1 Anti-social constructs investigated in prior SE studies . . . . . . . . . . 9

Table 2 An overview of the three SE domain specific toxicity datasets used in
this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 3 Rubric to label the SE text as toxic or non-toxic, adjusted from [153] . 30

Table 4 Examples of text preprocessing steps implemented in ToxiCR . . . . . 32

Table 5 An overview of the hyper parameters for our deep neural networks and
transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 6 Performances of the four contemporary toxic detectors to establish a
baseline performance. For our classifications, we consider toxic texts
as the ‘class 1’ and non-toxic texts as the ‘class 0’. . . . . . . . . . . . . 48

Table 7 Mean performances of the ten selected algorithms based on 10-fold
cross validations. For each group, a shaded background indicates sig-
nificant improvements over the others from the same group . . . . . . 50

Table 8 Best performing configurations of each model with optional prepro-
cessing steps. A shaded background indicates significant improve-
ments over its base configuration (i.e., no optional preprocessing). For
each column, bold font indicates the highest value for that measure. †
– indicates an optional SE domain-specific pre-processing step. . . . . 54

Table 9 Performance of ToxiCR on Gitter dataset . . . . . . . . . . . . . . . . . 57

Table 10 Confusion Matrix for our best performing model (i.e., BERT) for the
combined code review dataset . . . . . . . . . . . . . . . . . . . . . . . 57

Table 11 Raw dataset with character spans. Red marked represents selected
toxic words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 12 Example of Inter-Rater Agreement and Conflict Resolution . . . . . . . 73

Table 13 Example of model predictions. red represents the toxic tokens . . . . . 84

Table 14 Experimental Results with the optimal threshold. The runtime of each
model and performances during each fold is included in the replication
package [152] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 15 Example of some errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

x



Table 16 The list of attributes selected to investigate their association with
project characteristics (RQ2). . . . . . . . . . . . . . . . . . . . . . . . 107

Table 17 The list of attributes selected to investigate their association with Pull
request context (RQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table 18 The list of attributes selected to investigate their association with par-
ticipants’ characteristics (RQ4). . . . . . . . . . . . . . . . . . . . . . . 110

Table 19 Model fit measured using Psuedo R2 and model significance evaluated
using the log-likelihood ( χ2) test for the bootstrapped logistic regres-
sion models. A 95% confidence interval is also reported for each mea-
sure inside the brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Table 20 The most common forms of toxicities within our sample of manually
labeled 532 PR comments . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table 21 Results of our MLR model to identify associations of project charac-
teristics with toxicity. We set the ‘Low toxic’ group as the reference to
compute odds ratios. Hence, OR > 1 indicates a higher likelihood of a
project transitioning to the ‘Medium toxic’ or ‘High toxic’ group with a
unit increment of that factor and vice versa. . . . . . . . . . . . . . . . 118

Table 22 Associations between pull request contexts and toxicity. Values repre-
sent the median odds ratio for each factor with 95% confidence inter-
vals inside brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Table 23 Associations between characteristics of authors and targets and toxic-
ity. Values represent the median odds ratio for each factor with 95%
confidence intervals inside brackets. . . . . . . . . . . . . . . . . . . . . 121

xi



LIST OF FIGURES

Figure 1 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2 A simplified overview of ToxiCR showing key pipeline . . . . . . . . . . . 26

Figure 3 The command line interface of ToxiCR showing various customization
options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4 Distribution of the misclassifications from the BERT model . . . . . . . . . 58

Figure 5 Manual Labeling using Label Studio, toxic span is highlighted . . . . . 72

Figure 6 Model Architecture of ToxiSpanSE. Optimal threshold for each model
was empirically selected (detailed in 4.3.2.2), Blue arrow → shows
an example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 7 Threshold variation for RoBERTa model (Using Validation Set) . . . . 87

Figure 8 An overview of our research method . . . . . . . . . . . . . . . . . . . 101

xii



1

CHAPTER 1 INTRODUCTION

Prior research found evidence of toxic communications among various Free and Open

Source Software (FOSS) communities [61, 85, 126, 161]. Although toxic communica-

tions are less frequent among FOSS communities than in online platforms such as social

media and opinion forums, they may seriously affect the productivity or survival of a

FOSS project. For example, being demotivated and frustrated with toxic communications,

such as insults, threats, and sexual attacks from their peers, developers may leave a FOSS

project [50, 11]. Moreover, such communications often disproportionately impact new-

comers, women, and other marginalized groups [165, 89, 77]. Therefore, toxicity is also

a barrier to promoting diversity, equity, and inclusion. Although proactive identification

and mitigation of toxic communications is crucial, it is challenging for large-scale FOSS

communities with thousands of members (e.g., Mozilla, Debian, and OpenStack) to man-

ually check all communications for toxicity. Therefore, an automated identification and

mitigation mechanism can significantly help these communities combat toxicity. In this

context, my proposed dissertation aims to: “identify and mitigate toxic communications

among open-source software developers.”

1.1 Research Plan

This dissertation aims to achieve the above goal based on three studies. Figure 1 shows

an overview of the three studies conducted for this dissertation, which are as follows.

(Study 1) Development of a customized toxicity detector for the Software Engineer-

ing (SE) domain.

Motivation: Despite the existence of many off-the-shelf toxicity detectors, those perform
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Figure 1: Overview of Dissertation

poorly in SE texts [153]. However, such performance degradation is hardly surprising

since prior research on SE domain-specific sentiment analysis tools [91, 122, 4] established

needs for SE domain-specific natural language processing (NLP) tools. Although Raman

et al. [141] developed the first SE domain-specific toxicity detector, it performed poorly in

later studies [112, 137, 153]. Therefore, a reliable toxicity detector for the SE domain is

needed to better understand toxicity and its impacts.

Objective: To build an SE specific customized state-of-the-art toxicity detector. We an-

ticipate that this tool will help to combat toxicity among FOSS communities.

Approach: First, we have developed a rubric to label an SE text as toxic or non-toxic.

Using that rubric, we have manually labeled 19,651 Code Review (CR) texts. The off-

the-shelf toxicity detector performed poorly on our labeled SE texts. Further, we have

developed ToxiCR, a supervised learning-based toxicity detector for CR comments. ToxiCR

is trained with 19,651 labeled CR comments, where we used ten different machine learn-



3

ing and deep learning models.

Key findings: This study found that designing a reliable toxicity detector for the SE

domain is feasible. Preprocessing steps improve the performance of the models, but they

are algorithm-dependent. Although ToxiCR provided reliable performance in our dataset,

detecting the self-deprecating texts remains a challenge.

(Study 2) Development of an explainable toxicity detection tool for the SE developer’s

conversations

Motivation: A binary toxicity detector in the SE domain (i.e., ToxiCR) may help the

FOSS community remove a specific text from the conversation. However, it does not help

human moderators understand the specific reason(s) for toxicity. It is time-consuming for

a moderator to identify the offending excerpt(s) from a large paragraph. Due to the lack

of cultural differences, a moderator may fail to recognize the offending sentences from a

paragraph classified as toxic by these binary toxicity identification tools. Being motivated

by recent advances in explainable machine learning (ML) models, this study aims to create

a new SE domain-specific toxicity detector that overcomes this particular shortcoming.

Objective: To develop an explainable toxicity detector for the Software Engineering do-

main, which can precisely identify toxic excerpts from a text to assist FOSS moderators.

Approach: We manually labeled 3,757 CR comments to develop ground-truth annota-

tions for the toxic spans within the toxic samples. Further, we have developed ToxiSpanSE

that is trained with labeled toxic span dataset. To develop this model, we trained and eval-

uated five sequence-to-sequence transformer models. During our 10-fold cross-validation-

based evaluations, we found a model based on a fine-tuned RoBERTa, achieving the best

F1 score of 0.88.
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Key findings: During the manual labeling of toxic spans, we found that toxic span se-

lection is a highly subjective task for annotators. We recommend building a rubric before

labeling the text’s toxic span. During the model evaluation of ToxiSpanSE, the lexicon-

based approach performed well but lacked generalizability. Our findings suggested that

Transformer-based models are reliable and explainable for the FOSS community. More-

over, this study may help SE researchers develop proactive toxic prevention tools.

(Study 3) An Empirical Investigation of Toxic Communication During Pull Request

Reviews

Motivation: Although we have developed two state-of-the-art toxicity detectors to auto-

matically detect toxicity and toxic spans, there is a lack of empirical evidence how toxicity

harms and which demographics are influenced in FOSS projects. Also, it is unknown how

toxicity is associated with other measurable factors on a project. We aim to conduct a large

scale empirical analysis of toxicity in FOSS projects that may help the project management

i) to take the required steps to mitigate the toxic interactions and ii) to improve the de-

velopers’ relations. Moreover, this analysis may help the developers to get an overall idea

of the negative impacts of toxicity and motivate them not to use toxic conversations with

their peers.

Objective: To investigate the nature of toxicity, project characteristics, contextual fac-

tors, and participants with a large-scale empirical analysis.

Approach: We have conducted a large-scale mixed-method empirical study of 2,828

GitHub-based FOSS projects randomly selected based on a stratified sampling strategy. We

wrote Python scripts to mine all those projects’ public issue /pull request comments. Our
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sample includes 16 million pull requests (PRs), 69.5 million issue comments, and 32 mil-

lion PR comments. Using ToxiCR, a state-of-the-art SE domain-specific toxicity detector,

we automatically classified each comment as toxic or non-toxic. We also manually inves-

tigated a randomly selected sample of 600 comments to characterize toxicity and validate

our dataset’s performance. To boost a reliable performance on our dataset, we trained

several multivariate regression models to investigate the association between toxicity and

various factors related to projects, contexts, and participants.

Key findings: Profanity seems to be the dominant form of toxicity during GitHub PRs.

Insults, trolling, self-deprecations, and object-directed anger are other common forms

in GitHub. Gaming projects are highly associated with toxic comments, and corporate

projects are less likely to contain toxicity. While accepted PRs have a negative correla-

tion with the occurrence of toxicity, fixing bugs, code churn, long review intervals, change

entropy in the files, and iterative reviews show the opposite correlation. For participants,

women and newcomers are less likely to be authors or targets of toxic comments in GitHub

PR comments. While Long-term project contributors are less likely to author toxic com-

ments, they are more likely to be targets of toxicity. The developers who use more toxic

comments are likely to receive toxic replies.

1.2 Contributions

This dissertation provides key insights into the automatic identification and empirical

investigation of toxicity in the FOSS domain. The key contributions of this dissertation

include:

• An empirical understanding of toxic communications from an SE perspective.
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• A rubric to identify an SE text as toxic or nontoxic.

• A manually labeled a large-scale toxicity dataset of 19,651 code review comments.

• ToxiCR, an SE domain-specific toxicity detector. ToxiCR is currently the state-of-the-

art toxicity detector for the SE domain. ToxiCR and data are publicly available on

GitHub at: https://github.com/WSU-SEAL/ToxiCR.

• ToxiSpanSE, the first explainable toxicity detector for the SE domain. The model and

data are publicly available: https://github.com/WSU-SEAL/ToxiSpanSE.

• An expert-annotated, span-level toxicity labels for 3,757 toxic code review com-

ments.

• An empirical investigation of various categories of toxic communication among GitHub

Pull requests.

• A large-scale empirical investigation of factors associated with toxicity on GitHub.

• A set of actionable recommendations to mitigate toxicity from FOSS projects.

1.3 Outline of the Dissertation

This dissertation comprises seven chapters. The remainder of this dissertation is orga-

nized as follows.

Chapter 2 discusses the prior works with toxicity in FOSS communities, state-of-the-art

toxicity detectors, toxic span detections, and impacts of toxicity in Software Engineering

practice.

https://github.com/WSU-SEAL/ToxiCR
https://github.com/WSU-SEAL/ToxiSpanSE
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Chapter 3 presents the automated identification of toxic code reviews. This chapter

is based on publication at the ACM Transactions on Software Engineering and Method-

ology (TOSEM) 2023 [155]. Apart from that, our works related to this study have been

published at the Asia-Pacific Software Engineering Conference (APSEC) 2020 [153] and a

student research competition track paper at the Automated Software Engineering Confer-

ence (ASE) 2022 [150].

Chapter 4 presents an explainable toxicity detection for the SE domain. This work

is based on the publication at Empirical Software Engineering and Measurement (ESEM)

2023 [151].

We have done a large-scale empirical investigation of toxicity on GitHub Pull Requests

Comments, which are discussed in Chapter 5.

Chapter 6 summarizes the dissertation’s findings and provides some potential future

research directions.

Chapter 7 summarizes the academic manuscripts up to the dissertation.
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CHAPTER 2 BACKGROUND AND RELATED WORKS

This section defines toxic communications, provides a brief overview of prior works

on toxicity in FOSS communities, describes state-of-the-art toxicity detectors, toxic span

detection, and some empirical evidence of the impacts of toxicity in open source.

2.1 What constitutes a toxic communication?

The term ‘toxicity’ represents the negative or antisocial interactions in online conversa-

tions [10]. A report from [10] showed that 47% Americans experienced harassment and

abuse during online communication, and toxicity deters users from online engagement.

Toxicity is a complex phenomenon to construct as it is more subjective than other text

classification problems (i.g., online abuse, spam) [99], and often subject to the opinions

of beholders [104]. A broader view of toxicity is that of an umbrella of various antisocial

behaviors such as hate speech, cyberbullying, trolling, and flaming [112]. Whether a com-

munication should be considered as ‘toxic’ also depends on a multitude of factors, such as

communication medium, location, culture, and relationship between the participants. In

this dissertation, we focus especially on written online communications. According to the

Google Jigsaw AI team, a text from an online communication can be marked as toxic if it

contains disrespectful or rude comments that make a participant leave the discussion fo-

rum [5]. On the other hand, the Pew Research Center marks a text as toxic if it contains a

threat, offensive call, or sexually expletive words [55]. Anderson et al.’s definition of toxic

communication also includes insulting language or mockery [9]. Adinolf and Turkay stud-

ied toxic communication in online communities and their views of toxic communications

include harassment, bullying, griefing (i.e., constantly making other players annoyed), and
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SE study Construct Definition
Sarker et
al. [153]

Toxicity “includes any of the following: i) offensive name call-
ing, ii) insults, iii) threats, iv) personal attacks, v) flirta-
tions, vi) reference to sexual activities, and vii) swearing
or cursing.”

Miller et
al. [112]

Toxicity “an umbrella term for various antisocial behaviors in-
cluding trolling, flaming, hate speech, harassment, arro-
gance, entitlement, and cyberbullying”.

Ferreira et
al. [63]

Incivility “features of discussion that convey an unnecessarily dis-
respectful tone toward the discussion forum, its partici-
pants, or its topics”

Gunawardena
et al. [77]

Destructive
criticism

negative feedback which is nonspecific and is delivered in
a harsh or sarcastic tone, includes threats, or attributes
poor task performance to flaws of the individual.

Egelman et
al. [57]

Pushback “the perception of unnecessary interpersonal conflict in
code review while a reviewer is blocking a change re-
quest”

Table 1: Anti-social constructs investigated in prior SE studies

trolling [3]. To understand, how persons from various demographics perceive toxicity, Ku-

mar et al. conducted a survey with 17,280 participants inside the USA. To their surprise,

their results indicate that the notion of toxicity cannot be attributed to any single demo-

graphic factor [99]. According to Miller et al., various antisocial behaviors fit inside the

Toxicity umbrella such as hate speech, trolling, flaming, and cyberbullying [112]. While

some of the SE studies have investigated antisocial behaviors among SE communities using

the ‘toxicity’ construct [153, 141, 112], other studies have used various other lenses such

as incivility [63], pushback [57], and destructive criticism [77]. Table 1 provides a brief

overview of the studied constructs and their definitions.

2.2 Toxic communications in FOSS communities

FOSS communities have reported toxic content in developers’ communications in blog

posts [13, 53], podcasts [54], and talks [142]. Large open-source foundations face an

increase in toxicity in their groups. For example, the Linux Community experiences toxic-
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ity [53], and the founder apologized for using toxicity in Linux Kernel Mailing lists [183].

By conducting a survey, the Perl Foundation found that several members stepped down

due to receiving abusive messages [145]. Several other studies also have identified toxic

communications in FOSS communities [161, 141, 153, 33, 126]. Squire and Gazda found

occurrences of expletives and insults in publicly available IRC and mailing-list archives of

top FOSS communities, such as Apache, Debian, Django, Fedora, KDE, and Joomla [161].

More alarmingly, they identified sexist ‘maternal insults’ being used by many develop-

ers. Recent studies have also reported toxic communications among issue discussions on

Github [141] and during code reviews [153, 126, 77, 63]. Miller et al. conducted a quali-

tative study to better understand toxicity in the context of FOSS development [112]. They

created 100 Github issues representing various types of toxic interactions, such as insults,

arrogance, trolling, entitlement, and unprofessional behavior. Their analyses also suggest

toxicity in FOSS communities differs from those observed on online platforms such as

Reddit or Wikipedia [112].

Ferreira et al. [63] investigated incivility during code review discussions based on a

qualitative analysis of 1,545 emails from Linux Kernel Mailing Lists and found that the

most common forms of incivility among those forums are frustration, name-calling, and

importance. Egelman et al. studied the negative experiences during code review, which

they referred to as “pushback”, a scenario when a reviewer blocks a change request due to

unnecessary conflict [57]. Qiu et al. further investigated such “pushback” phenomena to

automatically identify interpersonal conflicts [137]. Gunawardena et al. investigated neg-

ative code review feedback based on a survey of 93 software developers, and they found

that destructive criticism can be a threat to gender diversity in the software industry as
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women are less motivated to continue when they receive negative comments or destruc-

tive criticisms [77].

2.3 State of the art toxicity detectors

To combat abusive online content, Google’s Jigsaw AI team developed the Perspective

API (PPA), which is publicly available [5]. PPA is one of the general purpose state-of-the-

art toxicity detectors. For a given text, PPA generates the probability (0 to 1) of that text

being toxic. As researchers are working to identify adversarial examples to deceive the

PPA [83], the Jigsaw team periodically updates it to eliminate identified limitations. The

Jigsaw team also published a guideline [6] to manually identify toxic contents and used

that guideline to curate a crowd-sourced labeled dataset of toxic online contents [92]. This

dataset has been used to train several deep neural network based toxicity detectors [68,

35, 59, 162, 76, 180]. Recently, Bhat et al. proposed ToxiScope, a supervised learning-

based classifier to identify toxic in workplace communications [20]. However, ToxiScope’s

best model achieved a low F1-Score (i.e., =0.77) during their evaluation

One of the major challenges in developing toxicity detectors is character-level obfus-

cations, where one or more characters of a toxic word are intentionally misplaced (e.g.,

fcuk), repeated (e.g., shiiit), or replaced (e.g., s*ck), to avoid detection. To address this

challenge, researchers have used character-level encoders instead of word-level encoders

to train neural networks [113, 120, 100]. Although character-level encoding-based mod-

els can handle such character-level obfuscations, they come with significant increments of

computation times [100]. Several studies have also found racial and gender bias among

contemporary toxicity detectors, as some trigger words (i.e., ‘gay’, ‘black’) are more likely
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to be associated with false positives (i.e, a nontoxic text marked as toxic) [179, 187, 148].

According to our best information, to combat toxicity in open source, Raman et al.

are the first ones to develop a toxicity classifier trained with a small-scale GitHub issue

discussion dataset [141] by leveraging the PPA tool and a customized version of Stanford’s

Politeness Detector [49]. However, several studies showed that their tool [141] performed

poorly on the large-scale SE texts [153, 137, 112, 150]. In 2022, Qiu et al. developed a

classifier for identifying interpersonal conflicts during code reviews [137]. Cheriyan et al.

developed a classifier to detect swearing and profanity [38] for four different SE platforms.

However, off-the-shelf toxicity detectors suffer significant performance degradation on SE

datasets [153]. Such degradation is not surprising since prior studies found off-the-shelf

natural language processing (NLP) tools also performing poorly on SE datasets [91, 4,

122, 105]. We conducted a benchmark study and investigated the performance of the

STRUDEL tool and four other off-the-shelf toxicity detectors on two SE datasets [153].

In our benchmark study [153], none of the tools achieved reliable performance to justify

practical applications on SE datasets. However, we also achieved encouraging performance

boosts when we retrained two of the tools (i.e., DPCNN [195] and BERT with FastAI [100])

using their SE datasets.

2.4 Toxic span detection

Although the detection of toxicity [129, 20, 68], hate speech [30, 31, 69], and of-

fensive language [37, 86] are common in online platforms, the idea of span detection of

toxicity has only more recently gained attention with the SemEval-2021 toxic span de-

tection task [127]. Toxic spans represent a part of the text that is responsible for the
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toxicity of the posts [130]. This direction is inspired by prior NLP studies on aspect-based

sentiment analysis [188, 135], which aims to detect the sentiment of a text and find the

specific region of a text that expresses the sentiment using attention-based deep neural

network models [188]. While earlier studies focused on the attention mechanism cham-

pioned by Vaswani et al. [182], Sen et al. found that machine attention does not reliably

overlap with human attention maps [160]. To improve explainability using attention-

based mechanisms, recent works have proposed transformer-based sequence-to-sequence

models [34, 136].

In the SemEval-2021 task, Pavlopoulos et al. provided a labeled dataset [127] of toxic

spans with 10,000 samples [130] curated from the Civil Comments dataset. The raters

marked the span that corresponds to the toxicity of a text. The task is a binary classifi-

cation because it contains toxic and non-toxic tokens. Moreover, they fixed the ground

truth of the dataset if the majority of the raters labeled the span as toxic. Ninety-one

teams made submissions with different methods in the SemEval-2021 competition to de-

tect toxic spans [127]. One of the teams proposed a BERT-based ensemble method toxic

span detection approach where they achieved 70.83% F1 score and secured first place in

SemEval-2021 task [197]. A RoBERTa-based method performed only slightly worse, with

a 70.77% F1 score, and other approaches based on fine-tuning of pre-trained transformer

models ([172, 39]) also performed well for that toxic span detection tasks. Since sev-

eral studies worked on toxic span detection for online civil comments, Pavlopoulos et al.

annotated a new dataset for toxic to civil transfer [128]. Although several studies have

proposed toxic span detectors for online comments, no such tool exists for the SE domain.

Since NLP tools may not work reliably on a cross-domain dataset [91], developing and
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evaluating an SE domain-specific toxic span detector is essential. Such a tool will not only

enable a finer-grained analysis of toxicity but also enable proactive notification to authors.

2.5 Contexts and consequences of anti-social behaviors in FOSS

Prior SE studies investigated contexts and consequences of anti-social behaviors using

surveys and qualitative analyses. These studies suggest toxic interactions among FOSS

developers as a ‘poison’ that not only degrades their mental health but [33] also can cause

stress and burnouts [141]. The threat of a FOSS community disintegrating rises with the

levels of toxicity due to developers’ turnover [33]. Miller et al.’s investigation of 100 locked

issues on GitHub found toxicity originated from newcomers and experienced contributors

due to technological disagreements, frustrations with a system, and past interactions with

the target [112]. Project sponsorship and domain may influence toxicity as corporate as-

sociation decreases toxicity [141], but belonging to the gaming domain increases [112].

A project’s toxicity may also decrease with age [141]. While uncivil discussions may arise

in various locked issue contexts, they are more common among versioning and licensing

discussions [62]. On the Linux kernel mailing list, inappropriate feedback from maintain-

ers and violation of community conventions are the top causes of incivility [63]. On the

other hand, among industrial developers, excessive workloads and poor-quality code are

top factors [140]. Two lenses of antisocial behaviors, destructive criticism and pushback,

are specific to code reviews. They occur due to unnecessary harsh critiques of code and in-

terpersonal conflicts caused by disagreements over development directions [57, 115, 77].

Both pushback and destructive criticisms not only decrease productivity and degrade in-

terpersonal relationships [115, 57], they disproportionately harm underrepresented mi-
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norities and barriers to promoting DEI [77]. Besides these academic works, several gray

literature have also documented burnouts and turnover of long-term FOSS contributors

due to toxicity [13, 53, 183, 103, 145, 11, 186].
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CHAPTER 3 AUTOMATED IDENTIFICATION OF TOXIC CODE
REVIEWS USING TOXICR

3.1 Introduction

Communications among the members of many Free and Open Source Software(FOSS)

communities include manifestations of toxic behaviours [161, 61, 13, 117, 85, 126]. These

toxic communications may have decreased the productivity of those communities by wast-

ing valuable work hours [23, 141]. FOSS developers being frustrated over peers with

‘prickly’ personalities [25, 64] may contemplate leaving a community for good [50, 11].

Moreover, as most FOSS communities rely on contributions from volunteers, attracting and

retaining prospective joiners is crucial for the growth and survival of FOSS projects [139].

However, toxic interactions with existing members may pose barriers against the success-

ful onboarding of newcomers [89, 165]. Therefore, it is crucial for FOSS communities to

proactively identify and regulate toxic communications.

Large-scale FOSS communities, such as Mozilla, OpenStack, Debian, and GNU, man-

age hundreds of projects and generate large volumes of text-based communications among

their contributors. Therefore, it is highly time-consuming and infeasible for the project ad-

ministrators to identify and intervene in ongoing toxic communications in a timely manner.

Although many FOSS communities have codes of conduct, those are rarely enforced due

to time constraints [11]. As a result, toxic interactions can be easily found within the

communication archives of many well-known FOSS projects. As an anonymous FOSS de-

veloper wrote after leaving a toxic community, “..it’s time to do a deep dive into the mailing

list archives or chat logs. ... Searching for terms that degrade women (chick, babe, girl, bitch,

cunt), homophobic slurs used as negative feedback (“that’s so gay”), and ableist terms (dumb,
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retarded, lame), may allow you to get a sense of how aware (or not aware) the community

is about the impact of their language choice on minorities.” [11]. Therefore, it is crucial to

develop an automated tool to identify toxic communication in FOSS communities.

Toxic text classification is a Natural Language Processing (NLP) task to automatically

classify a text as ‘toxic’ or ‘non-toxic’. There are several state-of-the-art tools to identify

toxic content in blogs and tweets [5, 100, 76, 8]. However, off-the-shelf toxicity detectors

do not work well on Software Engineering (SE) communications [153], since several char-

acteristics of such communications (e.g., code reviews and bug interactions) are different

from those of blogs and tweets. For example, compared to code review comments, tweets

are shorter and are limited to a maximum length. Tweets rarely include SE domain-specific

technical jargon, URLs, or code snippets [4, 153]. Moreover, due to different meanings of

some words (e.g, ‘kill’, ‘dead’, and ‘dumb’) in the SE context, SE communications with such

words are often incorrectly classified as ‘toxic’ by off-the-shelf toxicity detectors [141, 153].

To encounter this challenge, Raman et al. developed a toxicity detector tool (referred

as the ‘STRUDEL tool’ hereinafter) for the SE domain [141]. However, as the STRUDEL

tool was trained and evaluated with only 611 SE texts. Recent studies have found that

it performed poorly on new samples [137, 112]. To further investigate these concerns,

Sarker et al. conducted a benchmark study of the STRUDEL tool and four other off-the-

shelf toxicity detectors using two large scale SE datasets [153]. To develop their datasets,

they empirically developed a rubric to determine which SE texts should be placed in the

‘toxic’ group during their manual labeling. Using that rubric, they manually labeled a

dataset of 6,533 code review comments and 4,140 Gitter messages [153]. The results of

their analyses suggest that none of the existing tools are reliable in identifying toxic texts
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from SE communications, since all the five tools’ performances significantly degraded on

their SE datasets. However, they also found noticeable performance boosts (i.e., accuracy

improved from 83% to 92% and F-score improved from 40% to 87%) after retraining two

of the existing off-the-shelf models (i.e., DPCNN [195] and BERT with FastAI [100]) using

their datasets. Being motivated by these results, we hypothesize that a SE domain specific

toxicity detector can boost even better performances, since off-the-shelf toxicity detectors

do not use SE domain specific preprocessing steps, such as preprocessing of code snippets

included within texts. On this hypothesis, this paper presents ToxiCR, a SE domain spe-

cific toxicity detector. ToxiCR is trained and evaluated using a manually labeled dataset

of 19,651 code review comments selected from four popular FOSS communities (i.e., An-

droid, Chromium OS, OpenStack and LibreOffice). We selected code review comments

since a code review usually represents a direct interaction between two persons (i.e., the

author and a reviewer). Therefore, a toxic code review comment has the potential to be

taken as a personal attack and may hinder future collaboration between the participants.

ToxiCR is written in Python using the Scikit-learn [131] and TensorFlow [1]. It provides

an option to train models using one of the ten supervised machine learning algorithms

including five classical and ensemble-based, four deep neural network-based, and a Bidi-

rectional Encoder Representations from Transformer (BERT) based ones. It also includes

eight preprocessing steps with two being SE domain specific and an option to choose from

five different text vectorization techniques.

We empirically evaluated various optional preprocessing combinations for each of the

ten algorithms to identify the best performing combination. During our 10-fold cross-

validations evaluations, the best performing model of ToxiCR significantly outperforms
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existing toxicity detectors on the code review dataset with an accuracy of 95.8% and F-

score of 88.9%.

The primary contributions of this paper are:

• ToxiCR: An SE domain specific toxicity detector. ToxiCR is publicly available on

GitHub at: https://github.com/WSU-SEAL/ToxiCR.

• An empirical evaluation of ten machine learning algorithms to identify toxic SE com-

munications.

• Implementations of eight preprocessing steps including two SE domain specific ones

that can be added to model training pipelines.

• An empirical evaluation of three optional preprocessing steps in improving the per-

formances of toxicity classification models.

• Empirical identification of the best possible combinations for all the ten algorithms.

3.2 Research Methodology

To better understand our tool design, this section provides a brief overview of the

machine learning (ML) algorithms integrated with ToxiCR and five word vectorization

techniques for NLP tasks.

3.2.1 Supervised machine learning algorithms

For ToxiCR we selected ten supervised ML algorithms from the ones that have been

commonly used for text classification tasks. Our selection includes three classical, two

ensemble methods based, four deep neural networks (DNN) based, and a Bidirectional

https://github.com/WSU-SEAL/ToxiCR
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Encoder Representations from Transformer (BERT) based algorithms. The following sub-

sections provide a brief overview of the selected algorithms.

3.2.1.1 Classical ML algorithms: We have selected the following three classical algo-

rithms, which have been previously used for the classification of SE texts [4, 32, 101, 174,

174].

1. Decision Tree (DT) : In this algorithm, the dataset is continuously split according to

a certain parameter. DT has two entities, namely decision nodes and leaves. The

leaves are the decisions or the final outcomes. And the decision nodes are where the

data is split into two or more sub-nodes [138].

2. Logistic Regression (LR): LR creates a mathematical model to predict the probability

for one of the two possible outcomes and is commonly used for binary classification

tasks [18].

3. Support-Vector Machine (SVM): After mapping the input vectors into a high dimen-

sional non-linear feature space, SVM tries to identify the best hyperplane to partition

the data into n-classes, where n is the number of possible outcomes [44].

3.2.1.2 Ensemble methods: Ensemble methods create multiple models and then com-

bine them to produce improved results. We have selected the following two ensemble

methods based algorithms, based on prior SE studies [4, 101, 174].

1. Random Forest (RF): RF is an ensemble based method that combines the results

produced by multiple decision trees [80]. RF creates independent decision trees

and combines them in parallel using on the ‘bagging’ approach [28].
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2. Gradient-Boosted Decision Trees (GBT): Similar to RF, GBT is also an ensemble based

method using decision trees [67]. However, GBT creates decision trees sequentially,

so that each new tree can correct the errors of the previous one and combine the

results using the ‘boosting’ approach [158].

3.2.1.3 Deep neural networks: In recent years, DNN based models have shown sig-

nificant performance gains over both classical and ensemble based models in text classifi-

cation tasks [195, 96]. In this research, we have selected four state-of-the-art DNN based

algorithms.

1. Long Short Term Memory (LSTM): A Recurrent Neural Network (RNN) processes

inputs sequentially, remembers the past, and makes decisions based on what it has

learned from the past [144]. However, traditional RNNs may perform poorly on long-

sequence inputs, such as those seen in text classification tasks due to ‘the vanishing

gradient problem’. This problem occurs when an RNN’s weights are not updated

effectively due to exponentially decreasing gradients. To overcome this limitation,

Hochreiter and Schmidhuber proposed LSTM, a new type of RNN architecture, that

overcomes the challenges posed by long-term dependencies using a gradient-based

learning algorithm [81]. LSTM consists of four units: i) input gate, which decides

what information to add from the current step, ii) forget gate, which decides what

is to keep from prior steps, iii) output gate, which determines the next hidden state,

and iv) memory cell, stores information from previous steps.

2. Bidirectional LSTM (BiLSTM): A BiLSTM is composed of a forward LSTM and a back-

ward LSTM to model the input sequences more accurately than a unidirectional
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LSTM [74, 43]. In this architecture, the forward LSTM takes input sequences in

the forward direction to model information from the past, while the backward LSTM

takes input sequences in the reverse direction to model information from the fu-

ture [84]. BiLSTM has been shown to be performing better than the unidirectional

LSTM in several text classification tasks, as it can identify language contexts better

than LSTM [74].

3. Gated Recurrent Unit (GRU): Similar to LSTM, GRU belongs to the RNN family of

algorithms. However, GRU aims to handle ‘the vanishing gradient problem’ using a

different approach than LSTM. GRU has a much simpler architecture with only two

units, an update gate and a reset gate. The reset gate decides what information

should be forgotten for the next pass and the update gate determines which informa-

tion should pass to the next step. Unlike LSTM, GRU does not require any memory

cell and therefore needs shorter training time than LSTM [60].

4. Deep Pyramid CNN (DPCNN): Convolutional neural networks (CNN) are a special-

ized type of neural network that utilizes a mathematical operation called convolution

in at least one of their layers. CNNs are most commonly used for image classification

tasks. Johnson and Zhang proposed a special type of CNN architecture, named deep

pyramid convolutional neural network (DPCNN) for text classification tasks [90].

Although DPCNN achieves faster training time by utilizing word-level CNNs to rep-

resent input texts, it does not sacrifice accuracy over character-level CNNs due to its

carefully designed deep but low-complexity network architecture.
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3.2.1.4 Transformer model: In recent years, Transformer based models have been

used for sequence-to-sequence modeling such as neural machine translations. For a se-

quence to sequence modeling, a Transformer architecture includes two primary parts: i)

the encoder, which takes the input and generates the higher dimensional vector represen-

tation, and ii) the decoder, which generates the output sequence from the abstract vector

from the encoder. For classification tasks, the output of encoders is used for training.

Transformers solve the ‘vanishing gradient problem’ on long text inputs using the ‘self at-

tention mechanism’, a technique to identify the important features from different positions

of an input sequence [182].

In this study, we select Bidirectional Encoder Representations from Transformers, which

is commonly known as BERT [52]. BERT based models have achieved remarkable perfor-

mances in various NLP tasks, such as question answering, sentiment classification, and text

summarization [2, 52].

BERT’s transformer layers use multi-headed attention instead of recurrent units (e.g.,

LSTM, GRU) to model the contextualized representation of each word in an input.

3.2.2 Word vectorization

To train an NLP model, input texts need to be converted into a vector of features that

machine learning models can work on. Bag-of-Words (BOW) is one of the most basic rep-

resentation techniques, that turns an arbitrary text into a fixed-length vector by counting

how many times each word appears. As BOW representations do not account for grammar

and word order, ML models trained using BOW representations fail to identify relation-

ships between words. On the other hand, word embedding techniques convert words to
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n-dimensional vector forms in such a way that words having similar meanings have vec-

tors close to each other in the n-dimensional space. Word embedding techniques can be

further divided into two categories: i) context-free embedding, which creates the same

representation of a word regardless of the context where it occurs; ii) contextualized word

embeddings aim at capturing word semantics in different contexts to address the issue

of polysemous (i.e., words with multiple meanings) and the context-dependent nature of

words. For this research, we have experimented with five word vectorization techniques:

one BOW based, three context-free, and one contextualized. The following subsections

provide a brief overview of those techniques.

3.2.2.1 Tf-Idf: TF-IDF is a BOW based vectorization technique that evaluates how rel-

evant a word is to a document in a collection of documents. TF-IDF score for a word is

computed by multiplying two metrics: how many times a word appears in a document

(Tf), and the inverse document frequency of the word across a set of documents (Idf).

The following equations show the computation steps for Tf-Idf scores.

Tf
(
w, d

)
= f

(
w, d

)
/
∑
tϵd

f
(
t, d

)
(3.1)

Where, f
(
t, d

)
is the frequency of the word (w) in the document (d), and

∑
tϵd

f
(
t, d

)
rep-

resents the total number of words in d. Inverse document frequency (Idf) measures the

importance of a term across all documents.

Idf
(
w
)
= loge

(
N/wN

)
(3.2)
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Here, N is the total number of documents and wN represents the number of documents

having w. Finally, we computed the TfIdf score of a word as:

TfIdf
(
w, d

)
= Tf

(
w, d

)
∗ Idf

(
w
)

(3.3)

3.2.2.2 Word2vec: In 2013, Mikolaev et al. [111] proposed Word2vec, a context free

word embedding technique. It is based on two neural network models named Continuous

Bag-of-Words (CBOW) and Skip-gram. CBOW predicts a target word based on its context,

while skip-gram uses the current word to predict its surrounding context. During the

training, word2vec takes a large corpus of text as input and generates a vector space, where

each word in the corpus is assigned a unique vector, and words with similar meaning are

located close to one another.

3.2.2.3 GloVe: Proposed by Pennington et al. [132], Global Vectors for Word Repre-

sentation (GloVe) is an unsupervised algorithm to create context-free word embedding.

Unlike word2vec, GloVe generates vector space from the global co-occurrence of words.

3.2.2.4 fastText: Developed by the Facebook AI team, fastText is a simple and efficient

method to generate context-free word embeddings [21]. While Word2vec and GloVe can-

not provide embedding for out-of-vocabulary words, fastText overcomes this limitation by

taking into account the morphological characteristics of individual words. A word’s vector

in fastText based embedding is built from vectors of substrings of characters contained in

it. Therefore, fasttext performs better than Word2vec or GloVe in NLP tasks, if a corpus

contains unknown or rare words [21].
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Figure 2: A simplified overview of ToxiCR showing key pipeline

3.2.2.5 BERT: Unlike context-free embeddings (e.g., word2vec, GloVe, and fastText),

where each word has a fixed representation regardless of the context within which the

word appears, a contextualized embedding produces word representations that are dy-

namically informed by the words around them. In this study, we use BERT [52]. Similar

to fastText, BERT can also handle out of vocabulary words.

3.3 Tool Design

Figure 2 shows the architecture of ToxiCR. It takes a text ( i.e., code review comment)

as input and applies a series of mandatory preprocessing steps. Then, it applies a series of

optional preprocessing based on selected configurations. Preprocessed texts are then fed

into one of the selected vectorizers to extract features. Finally, output vectors are used to

train and validate our supervised learning-based models. The following subsections detail

the research steps to design ToxiCR.

3.3.1 Conceptualization of Toxicity

As we have mentioned in Section 2.1, what constitutes a ‘toxic communication’ depends

on various contextual factors. In this study, we specifically focus on popular FOSS projects

such as Android, Chromium OS, LibreOffice, and OpenStack, where participants represent
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diverse cultures, education, ethnicity, age, religion, gender, and political views. As partic-

ipants are expected and even recommended to maintain a high level of professionalism

during their interactions with other members of those communities [123, 134, 66], we

adopt the following expansive definition of toxic contents for this context.1:

“An SE conversation will be considered toxic, if it includes any of the following: i)

offensive name calling, ii) insults, iii) threats, iv) personal attacks, v) flirtations,

vi) reference to sexual activities, and vii) swearing or cursing.”

Our conceptualization of toxicity closely aligns with another recent work by Bhat et

el. that focuses on professional workplace communication [20]. According to their defini-

tion, toxic behavior includes any of the following: sarcasm, stereotyping, rude statements,

mocking conversations, profanity, bullying, harassment, discrimination, and violence.

3.3.2 Training Dataset Creation

As of May 2021, there are three publicly available labeled datasets of toxic communica-

tions from the SE domain. Raman et al.’s dataset created for the STRUDEL tool [141] in-

cludes only 611 texts. In our recent benchmark study (referred to as ‘the benchmark study’

hereinafter), we created two datasets, i) a dataset of 6,533 code review comments selected

from three popular FOSS projects (referred as ‘code review dataset 1’ hereinafter), i.e., An-

droid, Chromium OS, and LibreOffice; ii) a dataset of 4,140 Gitter messages selected from

the Gitter Ethereum channel (referred as ‘gitter dataset’ hereinafter) [153]. We followed

the exact same process used in the benchmark study to select and label an additional

13,038 code review comments selected from the OpenStack projects. In the following, we
1We introduced this definition in our prior study [153]. We are repeating this definition to assist better

comprehension of this paper’s context
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briefly describe our four-step process, which is detailed in our prior publication [153].

3.3.2.1 Data Mining In the benchmark, we wrote a Python script to mine the Ger-

rit [114] managed code review repositories of three popular FOSS projects, i.e., Android,

Chromium OS, and LibreOffice. Our script leverages Gerrit’s REST API to mine and store all

publicly available code reviews in a MySQL dataset. We use the same script to mine ≈ 2.1

million code review comments belonging to 670,996 code reviews from the OpenStack

projects’ code review repository hosted at https://review.opendev.org/. We followed

an approach similar to Paul et al. [126] to identify potential bot accounts based on key-

words (e.g., ‘bot’, ‘auto’, ‘build’, ‘auto’, ‘travis’, ‘CI’, ‘jenkins’, and ‘clang’). If our manual

validations of comments authored by a potential bot account confirmed it to be a bot, we

excluded all comments posted by that account.

3.3.2.2 Stratified sampling of code review comments Since toxic communications

are rare [153] during code reviews, a randomly selected dataset of code review comments

will be highly imbalanced with less than 1% toxic instances. To overcome this challenge,

we adopted a stratified sampling strategy as suggested by Särndal et al. [157]. We used

Google’s Perspective API (PPA) [5] to compute the toxicity score for each review comment.

If the PPA score is more than 0.5, then the review comment is more likely to be toxic.

Among the 2.1 million code review comments, we found 4,038 comments with PPA scores

greater than 0.5. In addition to those 4,038 review comments, we selected 9,000 code

review comments with PPA scores less than 0.5. We selected code review comments with

PPA scores less than 0.5 in a well-distributed manner. We split the texts into five categories

https://review.opendev.org/
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Table 2: An overview of the three SE domain specific toxicity datasets used in this study

Dataset # total texts # toxic # non-toxic
Code review 1 6,533 1,310 5,223
Code review 2 13,038 2,447 10,591
Gitter dataset 4,140 1,468 2,672
Code review (combined) 19,571 3,757 15,819

(i.e, score: 0-0.1, 0.11-0.2, and so on) and took the same amount (1,800 texts) from each

category. For example, we took 1,800 samples with a score between 0.3 and 0.4.

3.3.2.3 Manual Labeling During the benchmark study [153], we developed a manual

labeling rubric fitting our definition and the study context. Our initial rubric was based on

the guidelines the Conversation AI Team (CAT) published [6]. With these guidelines as

our starting point, two authors independently went through 1,000 texts to adopt the rules

to fit our context better. Then, we had a discussion session to merge and create a unified

set of rules. Table 3 represents our final rubric used for manual labeling during both the

benchmark study and this study.

Although we have used the guideline from the CAT as our starting point, our final rubric

differs from the CAT rubric in two key aspects to better fit our target SE context. First, our

rubric is targeted toward professional communities in contrast to the CAT rubric, which is

targeted toward general online communications. Therefore, profanities and swearing to

express a positive attitude may not be considered as toxic by the CAT rubric. For example,

“That’s fucking amazing! thanks for sharing.” is given as an example of ‘Not Toxic, or Hard

to say’ by the CAT rubric. On the contrary, any sentence with profanities or swearing is con-

sidered ‘toxic’ according to our rubric since such a sentence does not constitute a healthy

interaction. Our characterization of profanities also aligns with the recent SE studies on
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Table 3: Rubric to label the SE text as toxic or non-toxic, adjusted from [153]

# Rule Rationale Example*
Rule 1: If a text includes pro-

fane or curse words it
would be marked as
‘toxic’.

Profanities are the most
common sources of online
toxicities.

“fuck! Consider it
done!.”

Rule 2: If a text includes an
acronym, that generally
refers to expletive or
swearing, it would be
marked as ‘toxic’.

Sometimes people use
acronyms of profanities,
which are equally toxic as
their expanded form.

“WTF are you do-
ing!”

Rule 3: Insulting remarks re-
garding another person
or entities would be
marked as ‘toxic’.

Insulting another developer
may create a toxic environ-
ment and should not be en-
couraged.

“...shut up, smar-
typants.”

Rule 4: Attacking a person’s
identity (e.g., race,
religion, nationality,
gender or sexual ori-
entation) would be
marked as ‘toxic’.

Identity attacks are consid-
ered toxic among all cat-
egories of online conversa-
tions.

“Stupid fuck-
ing superstitious
Christians.”

Rule 5: Aggressive behavior
or threatening another
person or a community
would be marked as
‘toxic’.

Aggregations or threats may
stir hostility between two
developers and force the re-
cipients to leave the commu-
nity.

“yeah, but I’d re-
ally give a lot for
an opportunity to
punch them in the
face.”

Rule 6: Both implicit or ex-
plicit References to sex-
ual activities would be
marked as ‘toxic’.

Implicit or explicit refer-
ences to sexual activities
may make some develop-
ers, particularly females, un-
comfortable and make them
leave a conversation.

“This code makes
me so horny. It’s
beautiful.”

Rule 7: Flirtations would be
marked as ‘toxic’.

Flirtations may also make
a developer uncomfortable
and make a recipient avoid
the other person during fu-
ture collaborations

“I really miss you
my girl”.

Rule 8: If a demeaning word
(e.g., ‘dumb’, ‘stupid’,
‘idiot’, ‘ignorant’) refers
to either the writer
him/herself or his/her
work, the sentence
would not be marked
as ‘toxic’, if it does not
fit any of the first seven
rules.

It is common in the SE com-
munity to use those words
to express their own mis-
takes. In those cases, the
use of those toxic words
to themselves or their does
not make toxic meaning.
While such texts are unpro-
fessional [112], those do not
degrade future communica-
tion or collaboration.

“I’m a fool and
didn’t get the
point of the dein-
crement. It makes
sense now.”

Rule 9: A sentence, that does
not fit rules 1 through
8, would be marked as
‘non-toxic’.

General non-toxic com-
ments.

“I think Resource-
WithProps should
be there instead of
GenericResource.”

* Examples are provided verbatim from the datasets, to accurately represent the con-
text. We did not censor any text, except omitting the reference to a person’s name.



31

toxicity [112] and incivility [63]. Second, the CAT rubric is for labeling on a four-point

scale (i.e., ‘Very Toxic’, ‘Toxic’, ‘Slightly Toxic or Hard to Say’, and ‘Non toxic’) [6]. On the

contrary, our labeling rubric is much simpler on a binary scale (‘Toxic’ and ‘Non-toxic’),

since the development of a four-point rubric as well as classifier is significantly more chal-

lenging. We consider the development of a four-point rubric as a potential future direction.

Using this rubric, two authors independently labeled the 13,038 texts as either ‘toxic’

or ‘non-toxic’. After the independent manual labeling, we compared the labels from the

two raters to identify conflicts. The two raters had agreements on 12,528 (96.1%) texts

during this process and achieved a Cohen’s Kappa (κ) score of 0.92 (i.e., an almost perfect

agreement)2. We had meetings to discuss the conflicting labels and assign agreed-upon

labels for those cases. At the end of conflict resolution, we found 2,447 (18.76%) texts

labeled as ‘toxic’ among the 13,038 texts. We refer to this dataset as ‘code review dataset

2’ hereinafter. Table 2 provides an overview of the three datasets used in this study.

3.3.2.4 Dataset aggregation Since the reliability of a supervised learning-based model

increases with the size of its training dataset, we decided to merge the two code review

datasets into a single dataset (referred as ‘combined code review dataset’ hereinafter). We

believe such merging is not problematic due to the following reasons.

1. Both datasets are labeled using the same rubrics and following the same protocol.

2. We used the same set of raters for manual labeling.

3. Both of the datasets are picked from the same type of repository (i.e., Gerrit based
2Kappa (κ) values are commonly interpreted as follows: values≤ 0 as indicating ‘no agreement’ and 0.01

– 0.20 as ‘none to slight’, 0.21 – 0.40 as ‘fair’, 0.41 – 0.60 as ‘moderate’, 0.61–0.80 as ‘substantial’, and
0.81–1.00 as ‘almost perfect agreement’.
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Table 4: Examples of text preprocessing steps implemented in ToxiCR

Step Original Post Preprocessing
URL-rem ah crap. Not sure how I missed

that. http://goo.gl/5NFKcD
ah crap. Not sure how I missed
that.

Cntr-exp this line shouldn’t end with a pe-
riod

this line should not end with a
period

Sym-rem Missing: Partial-Bug: #1541928 Missing Partial Bug 1541928
Rep-elm haha... looooooooser! haha.. loser!
Adv-ptrn oh right, sh*t oh right, shit
Kwrd-rem† These static values should be put

at the top
These values should be put at the
top

Id-split† idp = self._create_dummy_idp
(add_clean_up = False)

idp = self. create dummy
idp(add clean up= False)

† – an optional SE domain specific pre-processing step

code reviews).

The merged code review dataset includes 19,651 code review comments, where 3,757

comments (19.2%) are labeled as ‘toxic.’

3.3.3 Data preprocessing

Code review comments are different from news, articles, books, or even spoken lan-

guage. For example, review comments often contain word contractions, URLs, and code

snippets. Therefore, we implemented eight data preprocessing steps. Five steps are

mandatory since they aim to remove unnecessary or redundant features. The remaining

three steps are optional and their impacts on toxic code review detection are empirically

evaluated in our experiments. Two out of the three optional pre-processing steps are SE

domain specific. Table 4 shows examples of texts before and after preprocessing.

3.3.3.1 Mandatory preprocessing ToxiCR implements the following five mandatory

pre-processing steps.

• URL removal (URL-rem): A code review comment may include a URL (e.g., a refer-
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ence to documentation or a StackOverflow post). Although URLs are irrelevant for

a toxicity classifier, they can increase the number of features for supervised classi-

fiers. We used a regular expression matcher to identify and remove all URLs from

our datasets.

• Contraction expansion (Cntr-exp): Contractions, which are shortened forms of one

or two words, are common among code review texts. For example, some common

words are: doesn’t →does not, we’re →we are. By creating two different lexicons

of the same term, contractions increase the number of unique lexicons and add re-

dundant features. We replaced the commonly used 153 contractions, each with its

expanded version.

• Symbol removal (Sym-rem): Since special symbols (e.g., &, #, and ˆ ) are irrelevant

for toxicity classification tasks, we use a regular expression matcher to identify and

remove special symbols.

• Repetition elimination (Rep-elm): A person may repeat some of the characters to mis-

spell a toxic word to evade detection from a dictionary-based toxicity detectors. For

example, in the sentence “You’re duumbbbb!”, ‘dumb’ is misspelled through charac-

ter repetitions. We have created a pattern based matcher to identify such misspelled

cases and replace each with its correctly spelled form.

• Adversarial pattern identification (Adv-ptrn): A person may misspell profane words by

replacing some characters with a symbol (e.g., ‘f*ck’ and ‘b!tch’) or use an acronym

for a slang (e.g., ‘stfu’). To identify such cases, we have developed a profanity prepro-
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cessor, which includes pattern matchers to identify various forms of the 85 commonly

used profane words. Our preprocessor replaces each identified case with its correctly

spelled form.

3.3.3.2 Optional preprocessing ToxiCR includes options to apply the following three

optional preprocessing steps.

• Identifier splitting (Id-split): In this preprocessing, we use a regular expression matcher

to split identifiers written in camelCase and under_score forms. For example, this

step will replace ‘isCrap’ with ‘is Crap’ and replace ‘is_shitty’ with ‘is shitty.’ This

preprocessing may help to identify example code segments with profane words.

• Programming Keywords Removal (Kwrd-rem): Code review texts often include pro-

gramming language-specific keywords (e.g., ‘while’, ‘case’, ‘if’, ‘catch’, and ‘except’).

These keywords are SE domain specific jargon and are not useful for toxicity predic-

tion. We have created a list of 90 programming keywords used in popular program-

ming languages (e.g., C++, Java, Python, C#, PHP, JavaScript, and Go). This step

searches and removes occurrences of those programming keywords from a text.

• Count profane words (profane-count): Since the occurrence of profane words is sug-

gestive of a toxic text, we think the number of profane words in a text may be an

excellent feature for a toxicity classifier. We have created a list of 85 profane words,

and this step counts the occurrences of these words in a text. While the remain-

ing seven pre-processing steps modify an input text pre-vectorization, this step adds

dimension to the post-vectored output of a text.
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3.3.4 Word Vectorizers

ToxiCR includes the option to use five different word vectorizers. However, due to

the limitations of the algorithms, each of the vectorizers can work with only one group

of algorithms. In our implementation, Tfidf works only with the classical and ensemble

(CLE) methods, Word2vec, GloVe, and fastText work with the deep neural network based

algorithms, and the BERT model includes its pre-trained vectorizer. For vectorizers, we

chose the following implementations.

1. TfIdf: We select the TfidfVectorizer from the scikit-learn library. We discard words

not belonging to at least 20 documents in the corpus to prevent overfitting.

2. Word2vec: We select the pre-trained word2vec model available at: https://code.

google.com/archive/p/word2vec/. This model was trained with a Google News

dataset of 100 billion words and contains 300-dimensional vectors for 3 million

words and phrases.

3. GloVe: Among the publicly available, pretrained GloVe models (https://github.

com/stanfordnlp/GloVe), we select the common crawl model. This model was

trained using web crawl data of 820 billion tokens and contains 300 dimensional

vectors for 2.2 million words and phrases.

4. fastText: From the pretrained fastText models 3, we select the common crawl model.

This model was trained using the same dataset as our selected GloVe model and

contains 300 dimensional vectors for 2 million words.
3https://fasttext.cc/docs/en/english-vectors.html

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://github.com/stanfordnlp/GloVe
https://github.com/stanfordnlp/GloVe
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5. BERT: We select a variant of BERT model published as ‘BERT_en_uncased’. This

model was pre-trained on a dataset of 2.5 billion words from Wikipedia and 800

million words from Bookcorpus [198].

3.3.5 Architecture of the ML Models

This section discusses the architecture of the ML models implemented in ToxiCR.

3.3.5.1 Classical and ensemble methods We have used the scikit-learn [131] imple-

mentations of the CLE classifiers.

• Decision Tree (DT): We have used the DecisionTreeClassifier class with default

parameters.

• Logistic Regression (LR): We have used the LogisticRegression class with default

parameters.

• Support-Vector Machine (SVM): Among the various SVM implementations offered

by scikit-learn, we have selected the LinearSVC class with default parameters.

• Random Forest (RF): We have used the RandomForestClassifier class from scikit-

learn ensembles. To prevent overfitting, we set the minimum number of samples to

split at to 5. For the other parameters, we accepted the default values.

• Gradient-Boosted Decision Trees (GBT): We have used the GradientBoostingClassifier

class from the scikit-learn library. We set n_iter_no_change =5, which stops the

training early if the last 5 iterations did not achieve any improvement in accuracy.

We accepted the default values for the other parameters.
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3.3.5.2 Deep Neural Networks Model We used version 2.5.0 of the TensorFlow li-

brary [1] for training the four deep neural network models (i.e., LSTM, BiLSTM, GRU, and

DPCNN).

Common parameters of the four models are:

• We set max_features = 5000 (i.e., the maximum number of features to use) to re-

duce the memory overhead as well as to prevent model overfitting.

• Maximum length of input is set to 500, which means our models can take texts with

at most 500 words as inputs. Any input over this length would be truncated to 500

words.

• As all three pre-trained word embedding models use 300 dimensional vectors to

represent words and phrases, we have set embedding size to 300.

• The embedding layer takes input embedding matrix as inputs. Each word (wi) from

a text is mapped (embedded) to a vector (vi) using one of the three context-free

vectorizers (i.e., fastText, GloVe, and word2vec). For a text T , its embedding matrix

will have a dimension of (300Xn), where n is the total number of words in that text.

• Since we are developing binary classifiers, we have selected binary_crossentropy

loss function for model training.

• We have selected the Adam optimizer (Adaptive Moment Estimation) [94] to update

the weights of the network during the training time. The initial learning_rate is set

to 0.001.
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• During the training, we set accuracy (A) as the evaluation metric.

The four deep neural models of ToxiCR are primarily based on three layers, as described

briefly in the following. Architecture diagrams of the models are included in our replication

package [152].

• Input Embedding Layer: After preprocessing of code review texts, those are con-

verted to input matrix. Embedded layer maps input matrix to a fixed dimension

input embedding matrix. We used three pre-trained embeddings, which help the

model to capture the low-level semantics using position based texts.

• Hidden State Layer: This layer takes the position wise embedding matrix and helps

to capture the high level semantics of words in code review texts. The configuration

of this layer depends on the choice of the algorithm. ToxiCR includes one CNN (i.e.,

DPCNN) and three RNN (i.e., LSTM, BiLSTM, GRU) based hidden layers. In the

following, we describe the key properties of these four types of layers.

– DPCNN blocks: Following the implementation of DPCNN [90], we set 7 con-

volution blocks with Conv1D layer after the input embedding layer. We also set

the other parameters of DPCNN model following [90]. Outputs from each of

the CNN blocks is passed to a GlobalMaxPooling1D layer to capture the most

important features from the inputs. A dense layer is set with 256 units which is

activated with a linear activation function.

– LSTM blocks: From the Keras library, we use LSTM unit to capture the hidden

sequence from the input embedding vector. LSTM unit generates the high di-
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mensional semantic representation vector. To reshape the output dimension, we

use flatten and dense layer after the LSTM unit.

– BiLSTM blocks: For text classification tasks, BiLSTM works better than LSTM

for capturing the semantics of long sequences of text. Our model uses 50 units

of Bidirectional LSTM units from the Keras library to generate the hidden se-

quence of the input embedding matrix. To downsample the high dimension

hidden vector from BiLSTM units, we set a GlobalMaxPool1D layer. This layer

downsamples the hidden vector from BiLSTM layer by taking the maximum

value of each dimension and thus captures the most important features for each

vector.

– GRU blocks: We use bidirectional GRUs with 80 units to generate the hid-

den sequence of input embedding vector. To keep the most important fea-

tures from GRU units, we set a concatenation of GlobalAveragePooling1D and

GlobalMaxPooling1D layers. GlobalAveragePooling1D calculates the average

of entire sequence of each vector and GlobalMaxPooling1D finds the maximum

value of entire sequence.

• Classifier Layer: The output vector of the hidden state layer projects to the output

layer with a dense layer and a sigmoid activation function. This layer generates the

probability of the input vector from the range 0 to 1. We chose a sigmoid activation

function because it provides the probability of a vector within the 0 to 1 range.
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3.3.5.3 Transformer models Among the several pre-trained BERT models4, we have

used bert_en_uncased, which is also known as the BERT_base model. We downloaded

the models from the tensorflow_hub, which consists of trained machine learning models

ready for fine-tuning.

Our BERT model architecture is as follows:

• Input layer: takes the preprocessed input text from our SE dataset. To fit into BERT

pretrained encoder, we preprocess each text using a matching preprocessing model

(i.e., bert_en_uncased_preprocess 5).

• BERT encoder: From each preprocessed text, this layer produces BERT embedding

vectors with higher level semantic representations.

• Dropout Layer: To prevent overfitting as well as eliminate unnecessary features, out-

puts from the BERT encoder layer are passed to a dropout layer with a probability of

0.1 to drop an input.

• Classifier Layer: Outputs from the dropout layer is passed to a two-unit dense layer,

which transforms the outputs into two-dimensional vectors. From these vectors, a

one-unit dense layer with a linear activation function generates the probabilities of

each text being toxic. Unlike deep neural network’s output layer, we have found that

the linear activation function provides better accuracy than non-linear ones (e.g,

relu, sigmoid) for the BERT-based models.
4https://github.com/google-research/bert
5https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3
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Table 5: An overview of the hyper parameters for our deep neural networks and
transformers

Hyper-Parameters Deep neural networks (i.e., DPCNN,
LSTM, BiLSTM, and GRU)

Transformer (BERT)

Activation sigmoid linear
Loss function binary crossentropy binary crossentropy
Optimizer adam Adamw
Learning rate 0.001 3e-5
Early stopping monitor val_loss val_loss
Epochs 40 15
Batch size 128 256

• Parameters: Similar to the deep neural network models, we use binary_crossentropy

as the loss function and Binary Accuracy as the evaluation metric during training.

• Optimizer: We set the optimizer as Adamw [109], which improved the generalization

performance of ‘adam’ optimizer. Adamw minimizes the prediction loss and does regu-

larization by decaying weight. Following the recommendation of Devlin et al. [52],

we set the initial learning rate to 3e− 5.

3.3.6 Model Training and Validation

The following subsections detail our model training and validation approaches.

3.3.7 Classical and ensembles

We evaluated all the models using 10-fold cross validations, where the dataset was

randomly split into 10 groups and each of the ten groups was used as a test dataset once,

while the remaining nine groups were used to train the model. We used stratified split to

ensure similar ratios of the classes between the test and training sets.

3.3.8 DNN and Transformers

We have customized several hyper-parameters of the DNN models to train our mod-

els. Table 5 provides an overview of those customized hyper-parameters. A DNN model
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can be overfitted due to over-training. To encounter that, we have configured our train-

ing parameters to find the best-fit model that is not overfitted. We split our dataset into

three sets during training according to 8:1:1 ratio. These three sets are used for training,

validation, and testing during our 10-fold cross validations to evaluate our DNN and trans-

former models. For training, we have set a maximum of 40 epochs6 for the DNN models

and a maximum of 15 epochs for the BERT model. During each epoch, a model is trained

using 80% samples, is validated using 10% samples, and the remaining 10% is used to

measure the performance of the trained model. To prevent overfitting, we have used an

EarlyStopping function from the Keras library, which monitors minimum val loss. If the

performance of a model on the validation dataset starts to degrade (e.g., loss begins to

increase or accuracy begins to drop), then the training process is stopped.

3.3.9 Tool interface

We have designed ToxiCR to support standalone evaluation and be used as a library for

toxic text identification. We have also included pre-trained models to save model training

time. Listing 1 shows a sample code to predict the toxicity of texts using our pretrained

BERT model.

We have also included a command line-based interface for model evaluation, retrain-

ing, and fine tuning hyperparameters. Figure 3 shows the usage help message of ToxiCR.

Users can customize execution with eight optional parameters, which are as follows:

1 from ToxiCR import ToxiCR

2

3 c l f=ToxiCR (ALGO="BERT" , count_pro fan i ty=False , remove_keywords=True ,

6the number of times that a learning algorithm will work through the entire training dataset
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Figure 3: The command line interface of ToxiCR showing various customization options

4 s p l i t _ i d e n t i f i e r=False ,

5 embedding=" ber t " , l oad_pre t ra ined=True )

6

7 c l f . i n i t _ p r e d i c t o r ()

8 sentences=[" t h i s i s crap " , " thank you fo r the in format ion " ,

9 " sh i * t t y code " ]

10

11 r e s u l t s=c l f . g e t _ t o x i c i t y _ c l a s s ( sentences )

Listing 1: Example usage of ToxiCR to classify toxic texts

• Algorithm Selection: Users can select one of the ten included algorithms by using the

–algo ALGO option.

• Number of Repetitions: Users can specify the number of times to repeat the 10-fold

cross-validations in evaluation mode using –repeat n option. Default value is 5.
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• Embedding: ToxiCR includes five different vectorization techniques: tfidf, word2vec,

glove, fasttext, and bert. tfidf is configured to be used only with the CLE models.

word2vec, glove, and fastext can be used only with the DNN models. Finally, bert

can be used only with the transformer model. Users can customize this selection

using the –embed EMBED option.

• Identifier splitting: Using the –split option, users can select to apply the optional

preprocessing step to split identifiers written in camelCases or under_scores.

• Programming keywords: Using the –keyword option, users can select to apply the

optional preprocessing step to remove programming keywords.

• Profanity: The –profanity optional preprocessing step allows to add of the number

of profane words in a text as an additional feature.

• Missclassification diagnosis: The –retro option is useful for error diagnosis. If this

option is selected, ToxiCR will write all misclassified texts in a spreadsheet to enable

manual analyses.

• Execution mode: ToxiCR can be executed in three different modes. The eval mode

will run 10-fold cross validations to evaluate the performance of an algorithm with

the selected options. In the eval mode, ToxiCR writes the results of each run and

model training time in a spreadsheet. The retrain mode will train a classifier with

the full dataset. This option is useful for saving models in a file to be used in the

future. Finally, the tuning mode allows exploring various algorithm hyperparameters

to identify the optimum set.
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3.4 Results

We empirically evaluated the ten algorithms included in ToxiCR to identify the best

possible configuration to identify toxic texts from our datasets. The following subsections

detail our experimental configurations and the results of our evaluations.

3.4.1 Experimental Configuration

To evaluate the performance of our models, we use precision, recall, f-score, and accu-

racy for both toxic (class 1) and non-toxic (class 0) classes. We computed the following

evaluation metrics.

• Precision (P ): For a class, precision is the percentage of identified cases that truly

belong to that class.

• Recall (R): For a class, recall is the ratio of correctly predicted cases and total number

of cases.

• F1-score (F1): F1-score is the harmonic mean of precision and recall.

• Accuracy (A): Accuracy is the percentage of cases that a model predicted correctly.

In our evaluations, we consider the F1-score for the toxic class (i.e., F11) as the most

important metric to evaluate these models, since i) identification of toxic texts is our pri-

mary objective, and ii) our datasets are imbalanced with more than 80% non-toxic texts.

To estimate the performance of the models more accurately, we repeated 10-fold cross

validations five times and computed the means of all metrics over those 5 *10 =50 runs.

We use Python’s Random module, which is a pseudo-random number generator, to create
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stratified 10-fold partitions, preserving the ratio between the two classes across all parti-

tions. If initialized with the same seed number, Random would generate the exact same

sequence of pseudo-random numbers. At the start of each algorithm’s evaluation, we ini-

tialized the Random generator using the same seed to ensure the exact same sequence of

training/testing partitions for all algorithms. As the model performances are normally

distributed, we use paired sample t-tests to check if observed performance differences be-

tween two algorithms are statistically significant (p < 0.05). We use the ‘paired sample

t-test’, since our experimental setup guarantees cross-validation runs of two different algo-

rithms would get the same sequences of train/test partitions. We have included the results

of the statistical tests in the replication package [152].

We conducted all evaluations on an Ubuntu 20.04 LTS workstation with an Intel i7-

9700 CPU, 32GB RAM, and an NVIDIA Titan RTX GPU with 24 GB memory. For Python

configuration, we created an Anaconda environment with Python 3.8.0, and tensorflow

/ tensorflow-gpu 2.5.0.

3.4.2 Baseline Algorithms

To establish baseline performances, we computed the performances of four existing

toxicity detectors (Table 6) on our dataset. We briefly describe the four tools in the follow-

ing.

1. Perspective API [5] (off-the-shelf): To prevent the online community from abusive

content, Jigsaw and Google’s Counter Abuse Technology team developed Perspective

API [5]. Algorithms and datasets to train these models are not publicly available.

Perspective API can generate the probability score of a text being toxic, servere_toxic,
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insult, profanity, threat, identity_attack, and sexually explicit. The score for each

category is from 0 to 1, where the probability of a text belonging to that category

increases with the score. For our two class classifications, we considered a text as

toxic if its Perspective API score for the toxicity category is higher than 0.5.

2. STRUDEL tool [141] (off-the-shelf): The STRUDEL tool is an ensemble based on

two existing tools: Perspective API and Stanford politeness detector and BoW vec-

tor obtained from preprocessed text. Its classification pipeline obtains the toxicity

score of a text using the Perspective API, computes the politeness score using the

Stanford politeness detector tool [49], and computes BoW vector using TfIdf. For

SE specificity, its TfIdf vectorizer excludes words that occur more frequently in the

SE domain than in a non-SE domain. Although STRUDEL tool also computes several

other features such as sentiment score, subjectivity score, polarity score, number of

LIWC anger words, and the number of emoticons in a text, none of these features

contributed to improved performances during its evaluation [141]. Hence, the best

performing ensemble from STRUDEL uses only the Perspective API score, Stanford

politeness score, and TfIdf vector. The off-the-shelf version is trained on a manually

labeled dataset of 654 Github issues.

3. STRUDEL tool [154] (retrain): Due to several technical challenges, we were unable

to retrain the STRUDEL tool using the source code provided in its repository [141].

Therefore, we wrote a simplified re-implementation based on the description in-

cluded in the paper and our understanding of the current source code. Upon con-

tacting, the primary author of the tool acknowledged our implementation as correct.
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Table 6: Performances of the four contemporary toxic detectors to establish a baseline
performance. For our classifications, we consider toxic texts as the ‘class 1’ and non-toxic

texts as the ‘class 0’.

Models Non-toxic Toxic AccuracyP0 R0 F10 P1 R1 F11
Perspective API [5] (off-the-
shelf)

0.92 0.79 0.85 0.45 0.70 0.55 0.78

Strudel Tool (off-the-
shelf) [141]

0.93 0.76 0.83 0.43 0.77 0.55 0.76

Strudel (retrain) [154] 0.97 0.96 0.97 0.85 0.86 0.85 0.94
DPCNN (retrain) [153] 0.94 0.95 0.94 0.81 0.76 0.78 0.91

Our implementation is publicly available inside the WSU-SEAL directory of the pub-

licly available repository: https://github.com/WSU-SEAL/toxicity-detector. Our

pull request with this implementation has also been merged into the original repos-

itory. For computing baseline performance, we conducted a stratified 10-fold cross

validation using our code review dataset.

4. DPCNN [153] (retrain): We cross-validated a DPCNN model [90], using our code

review dataset. We include this model in our baseline since it provided the best

retrained performance during our benchmark study [153].

Table 6 shows the performances of the four baseline models. Unsurprisingly, the two

retrained models provide better performances than the off-the-shelf ones. Overall, the

retrained Strudel tool provides the best scores among the four tools on all seven metrics.

So, we’re thinking about this model as the key baseline to improve on. The best toxicity

detector among the ones participating in the 2020 SemEval challenge achieved 0.92 F1

score on the Jigsaw dataset [192]. As the baseline models listed in Table 6 are evaluated

on a different dataset, it may not be fair to compare these models against the ones trained

on the Jigsaw dataset. However, the best baseline model’s F1 score is 7 (i.e., 0.92 -0.85 )

https://github.com/WSU-SEAL/toxicity-detector
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points lower than the ones from a non-SE domain. This result suggests that with existing

technology, it may be possible to train SE domain specific toxicity detectors with better

performances than the best baseline listed in Table 6.

Finding 1: Retrained models provide considerably better performances than the off-the-

shelf ones, with the retrained STRUDEL tool providing the best performances. Still, the

F11 score from the best baseline model lags 7 points behind the F11 score of state-of-

the-art models trained and evaluated on the Jigsaw dataset during 2020 SemEval chal-

lenge [192].

3.4.3 How do the algorithms perform without optional preprocessing?

The following subsections detail the performances of the three groups of algorithms

described in Section 3.3.5.
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3.4.3.1 Classical and Ensemble (CLE) algorithms The top five rows of Table 7 (i.e.,

CLE group) show the performances of the five CLE models. Among, those five algorithms,

RF achieves significantly higher P0 (0.956), F10 (0.969), R1 (0.81), F11 (0.859) and ac-

curacy (0.949) than the four other algorithms from this group. The RF model also sig-

nificantly outperforms (One-sample t-test) the key baseline (i.e., retrained STRUDEL) in

terms of the two key metrics, accuracy (A) and F11. Although, STRUDEL retrain achieves

better recall (R1), our RF based model achieves better precision (P1).

3.4.3.2 Deep Neural Networks (DNN) We evaluated each of the four DNN algorithms

using three different pre-trained word embedding techniques (i.e., word2vec, GloVe, and

fastText) to identify the best performing embedding combinations. Rows 6 to 17 (i.e.,

groups: DNN1, DNN2, DNN3, and DNN4) of the T le 7 show the performances of the four

DNN algorithms using three different embeddings. For each group, statistically significant

improvements (paired-sample t-tests) over the other two configurations are highlighted us-

ing a shaded background. Our results suggest that the choice of embedding does influence

the performances of the DNN algorithms. However, such variations are minor.

For DPCNN, only R1 score is significantly better with fastText than with GloVe or

word2vec. The other scores do not vary significantly among the three embeddings. Based

on these results, we recommend fastText for DPCNN in ToxiCR. For LSTM and GRU, GloVe

boosts significantly better F11 scores than those based on fastText or word2vec. Since F11

is one of the key measures to evaluate our models, we recommend the GloVe for both LSTM

and GRU in ToxiCR. Glove also boosts the highest accuracy for both LSTM (although not

statistically significant) and GRU. For BiLSTM, since fastText provides significantly higher
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P0, R1, and F11 scores than those based on GloVe or word2vec. We recommend fastText

for BiLSTM in ToxiCR. These results also suggest that three out of the four selected DNN al-

gorithms (i.e., except LSTM) significantly outperform (one-sample t-test) the key baseline

(i.e., retrained STRUDEL) in terms of both accuracy and F11-score.

3.4.3.3 Transformer The bottom row of Table 7 shows the performance of our BERT

based model. This model achieves the highest mean accuracy (0.957) and F11 (0.887)

among all the 18 models listed in Table 7. This model also outperforms the baseline

STRUDEL retrain on all seven metrics.

Finding 2: From the CLE group, RF provides the best performances. From the DNN group,

GRU with glove provides the best performances. Among the 18 models from the six groups,

BERT achieves the best performance. Overall, ten out of the 18 models also outperform

the baseline STRUDEL retrain model.

3.4.4 Do optional preprocessing steps improve performance?

For each of the ten selected algorithms, we evaluated whether the optional prepro-

cessing steps (especially SE domain specific ones) improve performances. Since ToxiCR

includes three optional preprocessing (i.e., identifier splitting (id-split), keyword removal

(kwrd-remove), and counting profane words (profane-count), we ran each algorithm with

23 = 8 different combinations. For the DNN models, we did not evaluate all three em-

beddings in this step, as that would require evaluating 3*8= 24 possible combinations for

each one. Rather, we used only the best performing embedding identified in the previous

step (i.e., Section 3.4.3.2).
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To select the best optional preprocessing configuration from the eight possible config-

urations, we use mean accuracy and mean F11 scores based on five time 10-fold cross

validations. We also used pair sampled t-tests to check whether any improvement over its

base configurations, as listed in the Table 7 (i.e., no optional preprocessing selected), is

statistically significant ( paired sample t-test, p < 0.05). Table 8 shows the best performing

configurations for all algorithms and the mean scores for those configurations. Checkmarks

(✓) in the preprocessing columns for an algorithm indicate that the best configuration for

that algorithm does use that pre-processing. To save space, we report the performances of

only the best combination for each algorithm. Detailed results are available in our replica-

tion package [152]. These results suggest that optional pre-processing steps improve the

models’ performances. Notably, CLE models gained higher improvements than the other

two groups. RF’s accuracy improved from 0.949 to 0.955 and F11 improved from 0.859 to

0.879 with the profane-count preprocessing.



54

Ta
bl

e
8:

B
es

t
pe

rf
or

m
in

g
co

nfi
gu

ra
ti

on
s

of
ea

ch
m

od
el

w
it

h
op

ti
on

al
pr

ep
ro

ce
ss

in
g

st
ep

s.
A

sh
ad

ed
ba

ck
gr

ou
nd

in
di

ca
te

s
si

gn
ifi

ca
nt

im
pr

ov
em

en
ts

ov
er

it
s

ba
se

co
nfi

gu
ra

ti
on

(i
.e

.,
no

op
ti

on
al

pr
ep

ro
ce

ss
in

g)
.

Fo
r

ea
ch

co
lu

m
n,

bo
ld

fo
nt

in
di

ca
te

s
th

e
hi

gh
es

t
va

lu
e

fo
r

th
at

m
ea

su
re

.
†

–
in

di
ca

te
s

an
op

ti
on

al
SE

do
m

ai
n-

sp
ec

ifi
c

pr
e-

pr
oc

es
si

ng
st

ep
.

G
ro

up
A

lg
o

Ve
ct

or
iz

er
Pr

ep
ro

ce
ss

in
g

N
on

-t
ox

ic
To

xi
c

A

pr
of

an
e-

co
u

n
t

kw
rd

-
re

m
ov

e†
id

-
sp

li
t†

P
0

R
0

F
1 0

P
1

R
1

F
1 1

C
LE

D
T

tfi
df

✓
✓

-
0.

96
0

0.
96

8
0.

96
4

0.
86

2
0.

83
0

0.
84

5
0.

94
2

G
B

T
tfi

df
✓

✓
-

0.
93

8
0.

98
1

0.
95

9
0.

90
1

0.
72

9
0.

80
6

0.
93

2

LR
tfi

df
✓

✓
-

0.
93

2
0.

98
1

0.
95

6
0.

89
8

0.
69

8
0.

78
5

0.
92

7

R
F

tfi
df

✓
-

-
0.

96
4

0.
98

1
0.

97
2

0.
91

7
0.

84
5

0.
87

9
0.

95
5

SV
M

tfi
df

✓
✓

-
0.

93
9

0.
97

7
0.

95
8

0.
88

6
0.

73
6

0.
80

4
0.

93
1

D
N

N

D
PC

N
N

fa
st

te
xt

✓
-

-
0.

96
4

0.
97

3
0.

96
8

0.
88

9
0.

84
6

0.
86

3
0.

94
8

LS
TM

gl
ov

e
✓

✓
✓

0.
94

4
0.

97
4

0.
95

9
0.

87
8

0.
75

6
0.

81
0

0.
93

2

B
iL

ST
M

fa
st

te
xt

✓
-

✓
0.

96
6

0.
97

5
0.

97
1

0.
89

2
0.

85
8

0.
87

5
0.

95
3

B
iG

R
U

gl
ov

e
✓

-
✓

0.
96

6
0.

97
6

0.
97

1
0.

89
7

0.
85

6
0.

87
6

0.
95

4

Tr
an

so
rm

er
B

ER
T

be
rt

-
✓

-
0.

97
0

0.
97

8
0.

97
4

0.
90

7
0.

87
4

0.
88

9
0.

95
8



55

During these evaluations, other CLE models also achieved between 0.02 to 0.04 per-

formance boosts in our key measures (i.e., A and F11). Improvements from optional

preprocessing also depend on algorithm choices. While the profane-count preprocessing

improved performances of all the CLE models, kwrd-remove improved all except RF. On

the other hand, id-split improved none of the CLE models.

All the DNN models also improved performances with the profane-count preprocessing.

Contrasting the CLE models, id-split was useful for three of the four DNNs. kwrd-remove

preprocessing improved only LSTM models. Noticeably, gains from optional preprocess-

ing for the DNN models were less than 0.01 over the base configurations’ and statistically

insignificant (paired-sample t-test, p > 0.05) for most cases. Finally, although we noticed

slight performance improvement (i.e., in A and F11) of the BERT model with kwrd-remove,

the differences are not statistically significant. Overall, at the end of our extensive eval-

uation, we found the best performing combination was a BERT model with kwrd-

remove optional preprocessing. The best combination provides 0.889 F11 score and

0.958 accuracy. The best performing model also significantly outperforms (one sample

t-test, p < 0.05) the baseline model (i.e., STRUDEL retrain in Table 6) in all the seven

performance measures.
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Finding 3: Eight out of the ten models (i.e., except SVM and DPCNN) achieved significant

performance gains through SE domain preprocessing, such as programming keyword re-

moval and identifier splitting. Although keyword removal may be useful for all four classes

of algorithms, identifier splitting is useful only for three DNN models. Our best model is

based on BERT, which significantly outperforms the STRUDEL retrain model on all seven

measures.

3.4.5 How do the models perform on another dataset?

To evaluate the generality of our models, we have used the Gitter dataset of 4,140

messages from our benchmark study [153]. In this step, we conducted two types of eval-

uations. First, we ran 10-fold cross validations of the top CLE model (i.e., RF) and the

BERT model using the Gitter dataset. Second, we evaluated cross dataset prediction per-

formance (i.e., off-the-shelf) by using the code review dataset for training and the Gitter

dataset for testing.

The top two rows of Table 9 show the results of 10-fold cross-validations for the two

models. We found that the BERT model provides the best accuracy (0.898) and the best

F11 (0.856). All seven performance measures achieved by the BERT model on the Gitter

dataset are lower than those on the code review dataset. This may be due to the smaller

size of the Gitter dataset (4,140 texts) than the code review dataset (19,571 texts). The

bottom two rows of the Table 9 shows the results of our cross-predictions (i.e., off-the-

shelf). Our BERT model achieved similar performances in terms of A and F11 in both

modes. However, the RF model performed better on the Gitter dataset in cross-prediction

mode (i.e., off-the-shelf) than in cross-validation mode. This result further supports our
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Table 9: Performance of ToxiCR on Gitter dataset

Mode Models Vectorizer Non-toxic Toxic Accuracy
P R F1 P R F1

Cross-validation
(retrain)

RF TfIdf 0.851 0.945 0.897 0.879 0.699 0.779 0.859
BERT BERT-en-uncased 0.931 0.909 0.919 0.843 0.877 0.856 0.898

Cross-prediction
(off-the-shelf)

RF TfIdf 0.857 0.977 0.914 0.945 0.704 0.807 0.881
BERT BERT-en-uncased 0.897 0.949 0.923 0.897 0.802 0.847 0.897

Table 10: Confusion Matrix for our best performing model (i.e., BERT) for the combined
code review dataset

Predicted
Toxic Non-toxic

Actual Toxic 3259 483
Non-toxic 373 15, 446

hypothesis that the performance drops of our models on the Gitter dataset may be due to

smaller-sized training data.

Finding 4: Although our best performing model provides higher precision off-the-shelf

on the Gitter dataset than that from the retrained model, the later achieves better recall.

Regardless, our BERT model achieves similar accuracy and F11 during both off-the-shelf

usage and retraining.

3.4.6 What are the distributions of misclassifications from the best performing model?

The best-performing model (i.e., BERT) misclassified only 856 texts out of the 19,571

texts from our dataset. There are 373 false positives and 483 false negatives. Table 10

shows the confusion matrix of the BERT model. To understand the reasons behind misclas-

sifications, we adopted an open coding approach where two of the authors independently

inspected each misclassified text to identify general scenarios. Next, they had a discussion

session, where they developed an agreed upon higher level categorization scheme of five

groups. With this scheme, those two authors independently labeled each misclassified text
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into one of those five groups. Finally, they compared their labels and resolved conflicts

through mutual discussions.
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Figure 4: Distribution of the misclassifications from the BERT model

Figure 4 shows distributions of the five categories of misclassifications from ToxiCR

grouped by False Positives (FP) and False Negatives (FN). The following subsections detail

those error categories.

3.4.7 General errors (GE)

General errors are due to failures of the classifier to identify the pragmatic meaning

of various texts. These errors represent 45% of the false positives and 46% of the false

negatives. Many GE false positives are due to words or phrases that more frequently

occur in toxic contexts and vice versa. For example, “If we do, should we just get rid of the

HBoundType?” and “Done. I think they came from a messed up rebase.” are two false positive

cases due to the phrases ‘get rid of’ and ‘messed up’ that have occurred more frequently in

toxic contexts.

GE errors also occurred due to infrequent words. For example, “"Oh, look. The stupidity

that makes me rant so has already taken root. I suspect it’s not too late to fix this, and

fixing this rates as a mitzvah in my book." – is incorrectly predicted as non-toxic as very
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few texts in our dataset include the word ‘stupidity’. Another such instance was “this is

another instance of uneducated programmers calling any kind of polymorphism overloading,

please translate it to override.”, due to the word ‘uneducated’. As we did not have many

instances of identified attacks in our dataset, most of those were also incorrectly classified.

For example, “most australian dummy var name ever!" was predicted as non-toxic by our

classifier.

3.4.7.1 SE domain specific words (SE): Words that have different meanings in the

SE domain than its’ meaning in the general domain (die, dead, kill, junk, and bug) [153]

were responsible for 40% false positives and 43% false negatives. For example, the text

“you probably wanted ‘die‘ here. eerror is not fatal.” , is incorrectly predicted as toxic due

to the presence of the words ‘die’ and ‘fatal’. On the other hand, although the word ‘junk’

is used to harshly criticize a code in the sentence “I don’t actually need all this junk...”,

this sentence was predicted as non-toxic as most of the code review comments from our

dataset do not use ‘junk’ in such a way.

3.4.7.2 Self deprecation (SD): Usage of self-deprecating texts to express humility is

common during code reviews [153, 112]. We found that 13% of 373 false positives and

11% of 493 false negatives were due to the presence of self deprecating phrases. For

example, “Missing entry in kerneldoc above... (stupid me)” is labeled as ‘non-toxic’ in our

dataset but is predicted as ‘toxic’ by our model. Although, our model did classify many of

the SD texts expressing humbleness correctly, those texts also led to some false negatives.

For example, although “Huh? Am I stupid? How’s that equivalent?” was misclassified as
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non-toxic, it fits ‘toxic’ according to our rubric due to its aggressive tone.

3.4.7.3 Bad acronym (BA) In few cases, developers have used acronyms with with

alternate toxic expansion. For example, the webkit framework used the acronym ‘WTF’

-‘Web Template Framework’7, for a namespace. Around 2% of our false positive cases were

comments referring to the ‘WTF’ namespace from Webkit.

3.4.7.4 Confounding contexts (CC) Some of the texts in our dataset represent con-

founding contexts and were challenging even for the human raters to make a decision.

Such cases represent 0.26% false positives and 1.04% false negatives. For example, “This

is a bit ugly, but this is what was asked so I added a null ptr check for |inspector_agent_|.

Let me know what you think.” is a false positive case from our dataset. We had labeled

it as non-toxic since the word ‘ugly’ is applied to critique code written by the author of

this text. On the other hand, “I just know the network stack is full of _bh poop. Do you

ever get called from irq context? Sorry, I didn’t mean to make you thrash.” is labeled as

toxic due to thrashing another person’s code with the word ‘poop’. However, the reviewer

also said sorry in the next sentence. During labeling, we considered it as toxic, since the

reviewer could have critiqued the code in a nicer way. Probably due to the presence of

mixed contexts, our classifier incorrectly predicted it as ‘non-toxic’.

Finding 5: Almost 85% of the misclassifications are due to either our model’s failure to

accurately comprehend the pragmatic meaning of a text (i.e., GE) or words having SE

domain specific synonyms.

7https://stackoverflow.com/questions/834179/wtf-does-wtf-represent-in-the-webkit-code-base

https://stackoverflow.com/questions/834179/wtf-does-wtf-represent-in-the-webkit-code-base
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3.5 Implications

Based on our design and evaluation of ToxiCR, we have identified the following lessons.

Lesson 1: Development of a reliable toxicity detector for the SE domain is feasible.

Despite creating an ensemble of multiple NLP models (i.e., Perspective API, Sentiment

score, Politeness score, Subjectivity, and Polarity) and various categories of features (i.e.,

BoW, number of anger words, and emoticons), the STRUDEL tool achieved only 0.57 F-

score during their evaluation. Moreover, a recent study by Miller et al. found false positive

rates as high as 98% [112]. On the other hand, the best model from the ‘2020 Semeval

Multilingual Offensive Language Identification in Social Media task’ achieved a F11 score

of 92.04% [193]. Therefore, the question remains, whether we can build a SE domain

specific toxicity detector that achieves similar performances (i.e., F1 =0.92) as the ones

from non-SE domains.

In designing ToxiCR, we adopted a different approach, i.e., focusing on text prepro-

cessing and leveraging state-of-the-art NLP algorithms rather than creating ensembles to

improve performances. Our extensive evaluation with a large scale SE dataset has iden-

tified a model that has 95.8% accuracy and boosts 88.9% F11 score in identifying toxic

texts. This model’s performances are within 3% of the best one from a non-SE domain.

This result also suggests that with a carefully labeled large scale dataset, we can train an

SE domain specific toxicity detector that achieves performances that are close to those of

toxicity detectors from non-SE domains.

Lesson 2: Performance from Random Forest’s optimum configuration may be ade-

quate if GPU is not available.
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While a deep learning-based model (i.e., BERT) achieved the best performances during

our evaluations, that model is computationally expensive. Even with a high-end GPU

such as Titan RTX, our BERT model required on average 1,614 seconds for training. We

found that RandomForest based models trained on a Core-i7 CPU took only 64 seconds on

average.

During a classification task, RF generates the decision using majority voting from all

sub-trees. RF is suitable for high dimensional noisy data like the ones found in text classifi-

cation tasks [87]. With carefully selected preprocessing steps to better understand contexts

(e.g., profanity count) RF may perform well for binary toxicity classification tasks. In our

model, after adding profane count features, RF achieved an average accuracy of 95.5%

and F11- score of 87.9%, which are within 1% of those achieved by BERT. Therefore, if

computation cost is an issue, a RandomForest based model may be adequate for many

practical applications. However, as our RF model uses a context-free vectorizer, it may

perform poorly on texts, where prediction depends on surrounding contexts. Therefore,

for a practical application, a user must take that limitation into account.

Lesson 3: Preprocessing steps do improve performances.

We have implemented five mandatory and three optional preprocessing steps in ToxiCR.

The mandatory preprocessing steps do improve performances of our models. For exam-

ple, a DPCNN model without these preprocessing achieved 91% accuracy and 78% F11

(Table 6). On the other hand, a model based on the same algorithm achieved 94.4% accu-

racy and 84.5% F11 with these preprocessing steps. Therefore, we recommend using both

domain specific and general preprocessing steps.
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Two of our pre-processing steps are SE domain specific (i.e., Identifier Splitting, Pro-

gramming Keywords removal). Our empirical evaluation of those steps (Section 3.4.4)

suggest that eight out of the ten models (i.e., except SVM and DPCNN) achieved sig-

nificant performance improvements through these steps. Although, none of the models

showed significant degradation through these steps, significant gains were dependent on

algorithm selection, with CLE algorithms gaining only from keyword removal and identi-

fier splitting improving only the DNN ones.

Lesson 4: Performance boosts from the optional preprocessing steps are algorithm

dependent.

The three optional preprocessing steps also improved the performances of the classi-

fiers. However, performance gains through these steps were algorithm-dependent. The

profane-count preprocessing had the highest influence as nine out of the ten models

gained performance with this step. On the other id-split was the least useful one with

only three DNN models gaining minor gains with this step. CLE algorithms gained the

most with ≈ 1% boost in terms of accuracies and 1 -3% in terms of F11 scores. On the

other hand, DNN algorithms had relatively minor gains (i.e., less than 1%) in both accura-

cies and F11 scores. Since DNN models utilize embedding vectors to identify the semantic

representation of texts, those are less dependent on these optional preprocessing steps.

Lesson 5: Accurate identification of self-deprecating texts remains a challenge.

Almost 11% (out of 856 misclassified texts) of the errors from our best performing

model was due to self-deprecating texts. Challenges in identifying such texts have also

been acknowledged by prior toxicity detectors [78, 184, 194]. Due to the abundance of
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self-deprecating texts among code review interactions [153, 112], this can be an area to

improve on for future SE domain specific toxicity detectors.

Lesson 6: Achieving even higher performance is feasible. Since 85% of errors are

due to failures of our models to accurately comprehend the contexts of words, we believe

achieving further improved performance is feasible. Since supervised models learn better

from larger training datasets, a larger dataset (e.g., Jigsaw dataset includes 160K samples),

may enable even higher performances. Second, NLP is a rapidly progressing area with

state-of-the-art techniques changing almost every year. Although, we have not evaluated

the most recent generation of models, such as GPT-3 [29] and XLNet [191] in this study,

those may help achieve better performances, as they are better at identifying contexts.

3.6 Threats to Validity

In the following, we discuss the four common types of threats to the validity of this

study.

3.6.1 Internal validity

The first threat to validity for this study is our selection of data sources which come

from four FOSS projects. While these projects represent four different domains, many

domains are not represented in our dataset. Moreover, our projects represent some of

the top FOSS projects with organized governance. Therefore, several categories of highly

offensive texts may be underrepresented in our datasets.

The notion of toxicity also depends on many factors such as culture, ethnicity, country

of origin, language, and relationship between the participants. We did not account for any

such factors during our dataset labeling.
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3.6.2 Construct validity

Our stratified sampling strategy was based on toxicity scores obtained from the per-

spective API. Although we manually verified all the texts classified as ‘toxic’ by the PPA, we

randomly selected only (5,5108 + 9,000 =14,510) texts that had PPA scores of less than

0.5. Among those 14,510 texts, we identified only 638 toxic ones (4.4%). If both the PPA

and our random selections missed some categories of toxic comments, instances of such

texts may be missing in our datasets. Since our dataset is relatively large (i.e., 19,571 ),

we believe this threat is negligible.

According to our definition, Toxicity is a large umbrella that includes various anti-social

behaviors such as offensive names, profanity, insults, threats, personal attacks, flirtations,

and sexual references. Though our rubric is based on the Conversational AI team, we have

modified it to fit a diverse and multicultural professional workplace such as a FOSS project.

As the notion of toxicity is a context-dependent complex phenomenon, our definition may

not fit many organizations, especially the homogeneous ones.

Researcher bias during our manual labeling process could also cause mislabeled in-

stances. To eliminate such biases, we focused on developing a rubric first. With the agreed

upon rubric, two of the authors independently labeled each text and achieved ‘almost per-

fect’ (κ = 0.92) inter-rater agreement. Therefore, we do not anticipate any significant

threat arising from our manual labeling.

We did not change most of the hyperparameters for the CLE algorithms and accepted

the default parameters. Therefore, some of the CLE models may have achieved better

performances on our datasets through parameter tuning. To address this threat, we used
8Code review 1 dataset
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the GridSearchCV function from the scikit-learn library with the top two CLE models (i.e.,

RandomForest and DecisionTree) to identify the best parameter combinations. Our imple-

mentation explored six parameters with total 5,040 combinations for RandomForest and

five parameters with 360 combinations for DecisionTree. Our results suggest that most of

the default values are identical to those from the best performing combinations identified

through GridSearchCV. We also reevaluated RF and DT with the GridSearchCV suggested

values, but did not find any statistically significant (paired sample t-tests, p > 0.05) im-

provements over our already trained models.

For the DNN algorithms, we did not conduct extensive hyperparameter search due to

computational costs. However, parameter values were selected based on the best practices

reported in the deep learning literature. Moreover, to identify the best DNN models, we

used validation sets and used EarlyStopping. Still, we may not have been able to achieve

the best possible performances from the DNN models during our evaluations.

3.6.3 External validity

Although we have not used any project or code review specific pre-processing, our

dataset may not adequately represent texts from other projects or other software devel-

opment interactions such as issue discussions, commit messages, or question /answers

on StackExchange. Therefore, our pretrained models may have degraded performances

in other contexts. However, our models can be easily retrained using a different labeled

datasets from other projects or other types of interactions. To facilitate such retraining,

we have made both the source code and instructions to retrain the models publicly avail-

able [152].
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3.6.4 Conclusion validity

To evaluate the performances our models, we have standard metrics such as accuracy,

precision, recall, and F-scores. For the algorithm implementations, we have extensively

used state-of-the-art libraries such as scikit-learn [131] and TensorFlow [1]. We also used

10-fold cross-validations to evaluate the performances of each model. Therefore, we do

not anticipate any threats to validity arising from the set of metrics, supporting library

selection, and evaluation of the algorithms.

3.7 Conclusion and Future Directions

This paper presents the design and evaluation of ToxiCR, a supervised learning-based

classifier to identify toxic code review comments. ToxiCR includes a choice to select one of

the ten supervised learning algorithms, an option to select text vectorization techniques,

five mandatory and three optional processing steps, and a large-scale labeled dataset of

19,571 code review comments. With our rigorous evaluation of the models with various

combinations of preprocessing steps and vectorization techniques, we have identified the

best combination that boosts 95.8% accuracy and 88.9% F11 score. We have released

our dataset, pretrained models, and source code publicly available on Github [152]. We

anticipate this tool being helpful in combating toxicity among FOSS communities. As a

future direction, we aim to conduct empirical studies to investigate how toxic interactions

impact code review processes and their outcomes among various FOSS projects.
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CHAPTER 4 TOXISPANSE: AN EXPLAINABLE TOXICITY DETECTION
IN CODE REVIEW COMMENTS

4.1 Introduction

Toxicity, which is a large umbrella term comprising various antisocial behaviors such

as offensive language, cyberbullying, hate speech, and sexually explicit content [12], is

pervasive among various online platforms [112, 9]. As most of the Free and Open Source

Software (FOSS) communities operate online, they are not immune from such toxic inter-

actions [141, 112, 155]. As software development requires close collaboration and rapport

among participants, toxicity can have severe repercussions for a FOSS community, which

include decreased productivity, wastage of valuable time [141], negative feelings among

the participants [57], barriers to newcomers’ onboarding [165, 89], hostile environments

towards minorities [77]. As proactive identification and mitigation of toxic interactions

among FOSS developers are crucial, automated approaches can help FOSS moderators.

Prior studies [155, 153] found that off-the-shelf toxicity detectors do not perform well

in the SE texts because some words (‘die’, ‘kill’, ‘dead’) in the SE context have a different

meaning. Due to the unreliability of off-the-shelf natural language processing (NLP) tools

on Software Engineering (SE) datasets [153, 91], recent works have proposed customized

toxicity detectors trained on SE communications [141, 155]. While these tools boost reli-

able performances on SE datasets, we have identified a shortcoming of these two solutions.

First, existing tools classify an entire paragraph on a binary scale, including hundreds of

sentences. Even if only one of those sentences is toxic, it classifies the whole paragraph

as toxic. A binary, paragraph-level classification of toxic texts may help the FOSS commu-

nity to decide to remove a particular paragraph or establish a code of conduct for toxic
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comments. However, it becomes time-consuming for a moderator to identify the offend-

ing excerpt(s) from a large paragraph. Second, due to the lack of cultural differences,

a moderator may fail to identify the offending sentences from a paragraph classified as

toxic by these tools. Being motivated by recent advances in explainable machine learning

(ML) models, this study aims to create a new SE domain-specific toxicity detector that

overcomes this particular shortcoming. We aim to develop an explainable toxicity detector

for the Software Engineering domain, which can precisely identify toxic excerpts from a text to

assist FOSS moderators. ‘Explainable’ in the context of this study indicates the ability of the

classifier to pinpoint the words/phrases responsible for a text’s toxic classification [143].

Our solution aims to pave a path for automated text moderation to foster healthy and

inclusive communication by reducing manual efforts to locate the toxic contents in FOSS

developers’ communication and helping project maintainers quickly identify the negative

parts of the comment to decide whether the text should be approved or rejected. Moreover,

this technique will also enable finer-grained toxicity analyses from the patterns of toxic

excerpts to determine possible remedies. Finally, our work can be a building block to

develop solutions to proactively prevent toxic communications, similar to grammatical

mistakes/typos detection tools.

A toxic span is defined as the fragment of a sentence or text that potentially causes

the meaning of the text to be toxic [130]. A toxic span may contain a single word or

a sequence of words. For example, “Yuck, this code is a crap” where the toxic spans are

highlighted with red color. The SemEval-2021’s Task 5 organizers provided 10K toxic posts

from the Civil Comments dataset [22] with labeled span character offsets. An ensemble

solution using BERT [52] achieved the best performance among the teams participating in
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this challenge. As prior research shows the necessity of SE domain-specific customization

for NLP tools [91, 153], these toxic span detectors may not perform well on SE texts.

Hence, we aim to build a customized solution.

On this goal, we select SE domain-specific toxicity dataset from Sarker et al. [155],

which consists of a total of 19,651 Code Review (CR) comments with 3,757 (∼ 19%)

toxic samples. We manually labeled this dataset using two independent raters to develop

ground-truth annotations for the toxic spans within the toxic samples. We measured inter-

annotator agreement using Krippendorff’s α [97], which was 0.81 (almost perfect agree-

ment). Using this dataset to establish a baseline model, we first developed a lexicon-based

classifier. We trained and evaluated five sequence-to-sequence transformer models. During

our 10-fold cross-validation-based evaluations, we found a model based on a fine-tuned

RoBERTa [106] achieving the best an F1−score of 0.88. Primary contributions of this work

include:

• ToxiSpanSE: The first explainable toxicity detector for the SE domain.

• An expert-annotated, span-level toxicity labels for 3,757 toxic code review com-

ments.

• An overview of metrics to develop explainable NLP tools for the SE domain.

• An empirical evaluation of five transformer-based models with 19,651 code review

texts.

• We make our model and dataset available for further analysis and use in the software

engineering community. Available at: https://github.com/WSU-SEAL/ToxiSpanSE

https://github.com/WSU-SEAL/ToxiSpanSE
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4.2 Research Method

After selecting a dataset from a prior work [155], two authors independently annotated

toxic spans in each text. Using this annotated dataset, we train and evaluate sequence-to-

sequence transformer models that output the probability of each word belonging to a toxic

span in the current text context. Finally, we use postprocessing steps to identify toxic spans

from the output probabilities based on empirically determined thresholds. The following

subsections detail our research methodology.

4.2.1 Dataset

The following subsections detail the dataset.

4.2.1.1 Dataset Selection The number of datasets for toxicity detection in Software

Engineering communication is small [141, 153]. We explored previous studies on toxicity

and antisocial behaviors in open-source interactions and found four studies that provided

manually labeled datasets for toxicity [141, 153, 155] and incivility [63] detection. Raman

et al. labeled only 611 texts from GitHub issue discussions as toxic or non-toxic [141]. In

2020, Sarker et al. provided a dataset of 6,533 CR comments and 4,140 Gitter messages

labeled as toxic or non-toxic [153]. They also provided a rubric to identify a text as toxic

or non-toxic. In a subsequent study of building a toxicity detection tool, they annotated

19,651 CR comments with binary, comment-level toxicity scores [155]. Moreover, Ferreira

et al. provided an annotated 1,545 emails from the Linux Kernel Mailing List where they

labeled each message as civil or uncivil [63]. Given that Sarker et al.’s dataset [155] is the

largest one in the Software Engineering domain for toxicity detection, we selected their

dataset for our study. Moreover, their detailed rubric also guides our annotators on how to



72

Figure 5: Manual Labeling using Label Studio, toxic span is highlighted

label toxic spans.

4.2.1.2 Dataset Annotation We got each of our toxic samples manually annotated by

two independent annotators. To diversify the annotators, we chose one woman and one

man for the annotation task. As manual labeling toxic text is a subjective task, we sought

to reduce subjectivity bias during manual annotation by asking our annotators to care-

fully read and follow the rubric for toxicity developed by [155]. Although Sarker et al.’s

dataset [155] includes 19,651 CR comments, only 3,757 are labeled as toxic. Therefore,

our annotators only labeled the 3,757 toxic ones, assuming that the non-toxic samples do

not include any toxic spans (empty span offsets).

For annotation, we use the Label Studio platform [176]. Figure 5 shows an example of

our annotation interface. We exported the labeled data from Label Studio, which returns

the code review text and corresponding character span offsets of the toxicity annotations

for each sample. Table 11 shows two example annotations. The first example shows a toxic

sample where the word ‘sucked’ makes text toxic, and this span occurs in character offsets

10-15. The third example is non-toxic and, therefore, has no span selected, resulting in an

empty list ([]) of character offsets.
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Table 11: Raw dataset with character spans. Red marked represents selected toxic words

Character Span Offsets CR Text
[10, 11, 12, 13, 14, 15] Yeah that sucked, fixed done.
[39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 74, 75, 76, 77] I think the formatting may

have gotten screwed up (or
Gerrit made it look ugly)

[ ] below assignments also
should be removed

Table 12: Example of Inter-Rater Agreement and Conflict Resolution

Rater Text Token Array Character
Spans

Rater1 if you think it sucks horri-
bly, that’s fine as long as we
can fix it

[0,0,0,0,1,1,0,0,0,0,0,0,0,0,0] [16-29]

Rater2 if you think it sucks horri-
bly, that’s fine as long as we
can fix it

[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] [16-20]

Final
Label

if you think it sucks horri-
bly, that’s fine as long as we
can fix it

[0,0,0,0,1,1,0,0,0,0,0,0,0,0,0] [16-29]

4.2.1.3 Inter-annotator Agreement We wrote a Python script to compare the spans

produced by the two annotators. Unsurprisingly, we have found conflicts between the la-

beling samples. Previous studies have suggested several chance-corrected agreement mea-

sures to compute the inter-annotator agreement (IAA) [27]. Chance-corrected measures

such as Cohen’s κ [41], Fleiss’ κ [65], and Scott’s π [159] distinguish the observed dis-

agreements (Do) from expected disagreements (De). Therefore, these IAA measures are

unsuitable for sequential tagging with potential partial overlaps [110].

Hence, similar to prior studies developing sequence tagging datasets [110, 124, 51, 27],

we chose Krippendorff’s α [97] as the IAA measure. Krippendorff’s α is more robust as it

can handle multiple annotators and missing values and considers partial agreement/dis-
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agreements among the labelers. Krippendorff’s α allows the distance-based formulation

designed for context-specific tasks. The formula of Krippendorff’s is: α = 1 − D̂o

D̂e
, for a

given distance function of D(a, b) where D̂o represents the observed average distance and

D̂e is expected average distance [27]. Since Krippendorff’s α calculates several distance

functions such as nominal, interval, and ordinal [97], we chose the nominal distance func-

tion for our measurement. To calculate Krippendorff’s α score, we wrote our script using

the existing implementation [75].

Our labeled dataset has 3757 toxic code review samples labeled by two raters for toxic

spans. For calculating Krippendorff’s α with nominal distance, created two arrays of labels.

We split each sample (s) to a set of tokens s = t0, t1, ....., tj where tj is a token inside the

sample s. As our primary dataset contains the character level span offsets, we preprocessed

it for token-level offsets. Table 12 shows an example of defining the token array for a

sample. There is a total of 15 tokens after excluding the comma (,) from the input text.

Therefore, we generate an array of 15 elements (same as the length of tokens) in which

each position corresponds to a token from the CR text. We have a same-length array for

Rater1 and Rater2 where we set 1 if the token is inside the span selection; otherwise

0. Following this process, we generated 3,757 arrays for all toxic samples of Rater1 and

Rater2. For computing agreement, we merge all the token-level annotations for each rater

into a single array where each array contains a total of 84,951 ratings. We calculated

Krippendorff’s α using the nominal distance between these two arrays and found the α

value as 0.81 (almost perfect agreement). This agreement score is significantly higher

than a prior work [110] where the agreement score α is 0.46.
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4.2.1.4 Conflict Resolution and Ground Truth We found that two labelers have at

least partial disagreement in 928 samples. Two of our raters (Rater1 and Rater2) discussed

resolving the conflicts and assigned the final labels. Table 12 shows an example conflict

with token arrays and corresponding character spans to illustrate our resolution process.

At the end of this step, our final dataset includes CR comments and the corresponding

character spans.

4.2.2 Tool Design

We compared two different approaches to design ToxiSpanSE. First, we used a lexicon-

based naive approach, where words belonging to a predefined list are marked as toxic

spans. Second, we used a supervised learning-based approach with five different transformer-

based encoders. Figure 6 depicts our model architecture for the transformer-based models

with an example prediction.

ToxiSpanSE takes input texts and associated labeled spans as input. After preprocessing,

inputs are passed to the transformer models. The output of those models are arrays of

floating point numbers ranging from 0 to 1, which indicate the probability of each token

belonging to a toxic span. The following subsections detail lexicon-based and transformer-

based approaches.

4.2.2.1 Preprocessing The model takes the CR text and the target spans (labeled spans)

with character offsets as input. Further, we split each text into sentences using en_core_web_sm

from the spacy library [82] and keep corresponding character span offsets for each sen-

tence. We have 39,438 sentences after splitting 19,651 CR texts; among those, 5,465

sentences have toxic spans. Therefore, around 13.85% samples in our dataset have at
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Figure 6: Model Architecture of ToxiSpanSE. Optimal threshold for each model was
empirically selected (detailed in 4.3.2.2), Blue arrow → shows an example
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least one toxic span. We chose sentence-level evaluation for two reasons: i) a sentence

may itself have toxic spans, ii) prior work also did sentence splitting for toxic span de-

tection [172]. Further, we apply a tokenizer to convert each sentence to corresponding

tokens. In this study, we use tokenizers that are appropriate for each model. For the

lexicon-based model, we chose NLTK word_tokenize [108] from Python. On the other

hand, we use transformer-based encoder models’ corresponding tokenizer from hugging-

face [185]. We use AutoTokenizer function and select: i) bert-base-uncased, ii) roberta-base,

iii) distilbert-baseuncased, iv) albert-base-v2, and v) xlnet-base-cased tokenizers for their

corresponding encoder model. Moreover, we set the maximum length to 70 during the

tokenization of each sentence, as using a Python script we empirically found that 98.5%

of our sentence samples have less than 70 tokens. This pruning was essential as taking a

large token length significantly increases both required memory and training time. Each

transformer-based pre-trained tokenizer splits the sentences into sub-word token strings

and adds an unknown token to its dictionary if it finds them. For each sentence, each

transformer-based tokenizer generates a special token at the start of the sentence at the

end of the sentence (i.e., the bert-base tokenizer puts the [CLS] token at first and the [SEP]

token at the end of each text). To pass the tokens of each sentence into the encoder model,

we take three inputs for each sample from the tokenizers: input_ids, token_type_ids, and

attention_mask. We can decode the vector to the original string using input_ids.

4.2.2.2 IO Encoding Prior NLP works with sequence labeling datasets followed BIO [172]

or IO [36] tagging to encode the spans. BIO stands for Beginning, Inside, and Outside,

where B-indicates the beginning token of a toxic span, I- indicates that the token is inside
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the toxic span, and O indicates a token outside the toxic span. BIO is suitable for NLP

tasks to divide a span of text into multiple chunks. As we aim to identify which text spans

contain something toxic, a simpler one, i.e., the IO-encoding, is sufficient for our goal.

Moreover, IO simplifies our processing steps. In our IO encoding, every I tag corresponds

to a token inside a toxic span, and O indicates outside.

To get the target span, we use their offset_mapping to determine whether that token is

inside the selected toxic span. Offset_mapping provides each token’s starting and ending

character. Next, we generate a sequence of 0s (non-toxic token) and 1s (toxic token) for

each sentence. Hence, our ground truth target is a sequence of 1’s and 0’s of maximum

length (70). We consider the first and last token value as 0 for each sample because each

tokenizer of pre-trained transformers generates a special token at the start and another at

the end. Finally, for each sentence, we have a vector (length = 70) containing a sequence

of 0s and 1s, which is the ground truth target vector.

4.2.2.3 Lexicon Based Model We also designed a naive model referred to as the ‘lexicon-

based’ model for detecting toxic spans from our dataset. In general, toxic spans contain

many common words, including profanity, sexually explicit, and swear words. The pur-

pose of developing this model is to evaluate whether a simple lexicon search-based ap-

proach compares against state-of-the-art transformer-based models. Our lexicon-based

model matches each token in a text against a list of common toxic tokens with our ground

truth tokens. We curated a list of toxic tokens (ΣTOK = tok0, tok1, ...., toki) from two prior

studies, which include 85 profane words from Sarker et al. [155] and the top 100 toxic

tokens from Kurita et al. [100]. In total, our lexicon list contains 167 tokens since there
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are overlapping tokens between those two lists.

Ground Truth For Lexicon Based Classification: To tokenize each sentence, we use NLTK

word_tokenize from Python. Further, we use textspan library [173] to get the exact location

of selected tokens from the human labeling spans. We use a similar IO encoding approach

for this model (70-length vector for each input), where if that is inside the labeled span,

we put the token position as 1, otherwise 0.

Lexicon Based Classifier Output: We generate an output vector(vec) for each input sen-

tence with a length of 70. We set the veci = 1 if that token of the input matches with one

of the tokens from the TOK, and veci = 0, otherwise.

4.2.2.4 Transformer based model The Transformer deep learning architecture that

emerged in 2017 [182] is based on multi-head self-attention and has shown to perform

significantly better than Recurrent Neural Network (RNN)-based models for sequence-to-

sequence tasks. Transformers use a self-attention mechanism for computing the inter-

nal representation of input and outputs. Moreover, the transformer-based model does

not require any pre-computed context-free embedding vectors. Instead, it can generate

context-based embeddings by pre-training the entire model as an encoder for sequence-to-

sequence tasks.

From the preprocessing steps, we have inputs (input_ids, token_type_ids, attention_mask)

for each sentence, and we have generated ground truth (target labels) using IO encoding.

Inputs and targeted IO encoding are passed to the encoder layer to generate context-based

embeddings. Since there are several Transformer based encoders available for sequence

classification tasks, we consider the following transformers, which performed well in a



80

prior token-level classification task [127]. In this work, we used Transformer based en-

coders from the HuggingFace library [185], selecting the following pre-trained encoders:

• BERT: Devlin et al. proposed the pretraining of the Deep Bidirectional Transformers

for Language Understanding (BERT) model in 2018 that was trained with masked

language modeling (MLM) and next sentence prediction (NSP) [52]. We use the

BERT-base model, which has 12 transformer layers with 768 hidden states and 12 at-

tention heads with 110 M parameters. BERT can be fine-tuned with domain-specific

datasets for sentence and sequence classification tasks.

• DistilBERT: Sanh et al. proposed a lighter and faster version of the bert-base model,

using modeling distillation, referred to as “DistilBERT” [146]. It has around 66 M

parameters (40%

• RoBERTa: An optimized version of BERT is RoBERTa, which achieved better per-

formance than BERT-base in some NLP tasks by pretraining the model for a longer

time and on more data than the original BERT [106]. The base model has the same

architecture as the BERT-base model.

• ALBERT: ALBERT has a similar architecture to the BERT-base but has only 128 hidden

embedding layers that reduced the total parameters to 12 M [102]. We chose to use

the ALBERT-base model for this study.

• XLNet: Unlike the autoencoder (AE) language models (i.e., BERT), Yang et al. pro-

posed XLNet, which is based on autoregressive language modeling [191]. XLNet

sought to overcome the limitations of the BERT model by maximizing the expected
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likelihood over all permutations of the factorization order. Moreover, its performance

does not rely on data corruption. We use xlnet-base-cased model from the transformer

library, which has a similar size as BERT-base model.

In this experiment, we select those pre-trained encoders from the HuggingFace li-

brary [185]. After the embeddings with size (1 X 70), we set a Dense layer to set the

required final output size. Moreover, since we are doing a binary sequence classification

task, the ‘sigmoid’ activation function is added to this Dense layer to generate the final out-

put’s probability. Therefore, our final output vector is a sequence of floating point values

(from 0 to 1 due to the sigmoid function) with a length of 70.

4.2.2.5 Post Processing After fine-tuning the model (details in next section), we pre-

dict the probability score with the test samples. The model provides a probability score

from 0 to 1 for each token (70 per sample (s)). Using an empirically determined threshold

(Section 4.3.2.2) parameter, we decide whether a token is in the toxic class (1) or non-

toxic (0). Further, from the prediction vector, we generate a set (Preds) of indexes for

the output tokens in the toxic class. Our ground truth has already been preprocessed as

toxic and non-toxic tokens. We also generate a set of the indexes of toxic tokens from the

ground truth (Gs) of the test set. Finally, we wrote a Python script to decode each token

from the sample and show the output like figure 6. We have input “fucking c programmers,

done”, and the model provides the output ”<toxic>fucking </toxic>c programmers, done”.

To make the tool user-friendly, we use a tag (<toxic>) at the start and (</toxic>) at the

end for predicted tokens inside toxic spans.
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4.3 Evaluation

The following subsections describe the evaluation.

4.3.1 Evaluation Metrics

Since our task is based on a sequence tagging approach for toxic spans, we adjusted

our evaluation metric from Martino et al. [46] that is based on Potthast et al.’s plagiarism

detection work [133]. Recently, Pavlopoulos et al. also used the same metric for toxic span

detection in online discussions [128]. We decided to use this metric because it provides

partial credit for matching the toxic spans inside a sequence. Unlike prior studies [46, 133,

128], we have chosen token-level comparison instead of character level for measuring the

precision, recall, and F1 score. The token-level comparison is taken because token-to-

token comparison provides more explainability (comparing the ground truth toxic word

to predicted toxic word) than the character label comparison. For example, a token(s)

can represent the toxicity of the whole text, whether a character inside a token does not

represent that meaning.

Let a code review sample(s) represent a sequence of tokens tok0, ....tokj ⊆ s . After IO

encoding, the ground truth vector is a sequence of 1’s and 0’s with 70 values. We calculate

the ground truth token offset as Gs = postokm , ...., postokn. So, for each sample(s), Gs

contains the position of all toxic tokens (postokm). When no toxic token exists in the sample,

the Gs = empty. Similarly, a predictor model predicts the tokens with a floating value.

Further, we use a threshold (our experimental evaluation to identify optimal thresholds

for each setup is detailed in Section 4.3.2.2) to decide whether that token is toxic (1)

or non-toxic (0). We generate the predicted token offsets Preds for each sample from
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that vector. For better understanding, we put five examples in table 13 with ground truth

(GT) and predicted (Pred) token offsets. Since we processed our text into tokens in the

preprocessing steps, the first token offset (tok0) is for the special token (such as [CLS] for

bert tokenizer). Therefore, our first token (i.e., ‘it’) position count starts from 1.

In the first example of table 13, we observe that [7, 8, 9] token offsets are marked as

toxic, whereas [7,8,11] offsets are predicted. So, there are two exact matches (7, 8), one

position is not predicted (9), and one position is falsely predicted (10) as toxic. Hence, we

used precision (P), recall (R), and F1 for each sample s are calculated as follows:

P s(Preds, Gs) =
|Preds ∩Gs|

|Preds|
(4.1)

Rs(Preds, Gs) =
|Preds ∩Gs|

|Gs|
(4.2)

F1s(Preds, Gs) =
2 ∗ P s(Preds, Gs) ∗Rs(Preds, Gs)

P s(Preds, Gs) +Rs(Preds, Gs)
(4.3)

In the equation 4.1, we define the precision P s for each sample. We define the numera-

tor as the length of the intersection of the set of predicted offsets (Preds) and ground truth

token offsets (Gs). The denominator is the length of predicted offsets (Preds). Similarly,

we calculate the recall (Rs) by using equation 4.2. Finally, we combined equation 4.1 and

4.2 to calculate the F1 in equation 4.3.

However, these equations can fail due to 0 in denominators. For example, if a model

predicts none of the tokens from a sentence belonging to toxic spans, precision is undefined
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Table 13: Example of model predictions. red represents the toxic tokens

Ground Truth Text Predicted Text GT Off-
set

Pred
Offset

P R

it is not clear in code what the
hell rest means

it is not clear in code what the
hell rest means

[7,8,9] [7,8,11] 0.67 0.67

This will become a trash
quick with such a generic
name.

This will become a trash
quick with such a generic
name.

[] [5] 0 0

Your indentation is messed
up again

Your indentation is messed
up again

[4,5] [] 0 0

I do the same as you’re sug-
gesting in other code

I do the same as you’re sug-
gesting in other code

[] [] 1 1

Oh, shit, you’re right Oh, shit, you’re right [1,2,3] [3] 1 0.33

for that sentence. Similarly, for a correctly marked non-toxic instance, recall is undefined.

We used the same approach as both Pavlopoulos et al. [128] and the SemEval-2021 Task

5 [130] to measure a variation of precision, recall, and F-score for span detection tasks.

In this variation, if the number of predicted toxic tokens is 0 (i.e., |Preds| = 0), we check

the number of toxic tokens in the ground truth set (|Gs|). If both sets are empty, the

prediction is correct, and we assign this prediction a precision = 1; otherwise, we assign

precision = 0. On the other hand, if the ground truth set is empty (i.e., |Gs| = 0), we

assign recall = 1 only if the predicted set is also empty (i.e., |Preds| = 0), and recall = 0

otherwise. We would also like to let you know that these custom precision/recall measures

do not follow traditional precision/recall curve characteristics due to this variation.

We compute and report mean precision, recall, and F-score for the toxic and non-toxic

instances separately since our dataset is highly imbalanced. In our results, P0, and P1

denote precision for the non-toxic and toxic instances, respectively. We consider F11 as

our main measure for the experiments because it shows the measurement of the model for

the minority (toxic) class tokens.

To clarify the metric measurement, we show the calculation from the examples of Ta-
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ble 13. Here, for the first sample, the numerator for equation 4.1 and 4.2 is 2 (i.e., two

offsets are intersected). The denominator for equation 4.1 and 4.2 is 3. So, precision for

toxic class (P1) is: 2
3
= 0.67, recall for toxic class (R1) is: 2

3
= 0.67. We calculated the F1 as

0.67. While considering the second sample, the length of ground truth offset |Gi = 0|, but

its’ predicted offset length |Predi = 1|. Since its ground truth is empty, its’ metric aligns

with the non-toxic class. Hence, equation 4.2 (recall) would be 0
0

that would be undefined.

For that reason, we put P0 = 0 and R0 = 0 in the second case. Similarly, the third example

belongs to the toxic class metric where the length of |Predi = 0|. In this case, the equa-

tion 4.1 (precision value) will be 0
0
. For that reason, we set P1 = 0 and R1 = 0 in this case.

For the fourth example, both ground truth and prediction are empty. In those cases, we

consider both P0 = 1 and R0 = 1 because we provide full credit for this. The last example

shows the measurement where precision and recall are not the same.

4.3.2 Experimental Setup

We have done an extensive analysis of each model in our experiment. For accurate es-

timation of the model performance, we have done 10-fold cross-validation. Using Python’s

random.seed(), we create stratified 10-folds, which keep a similar ratio between toxic and

non-toxic classes for all splits. Further, in each fold, we keep 80% for the train set, 10%

for the validation set, and the rest 10% for the test set. We used an NVIDIA Titan RTX GPU

with 24 GB memory in Ubuntu 20.04 LTS workstation to conduct the evaluation.

4.3.2.1 Hyperparameters We set the following hyperparameters during the training of

our model:

• Loss Function: We chose a variant of a binary cross-entropy loss function for our task.
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Since we have multiple tokens (length = 70) with a range of fractional values from

0 to 1, we have added a too-small value (epsilon from Keras) with each prediction.

This procedure will help our model to be more stable and prevent the prediction

from 0 that can cause (log 0 = undefined) problems. Moreover, we added a clipping

between 1 and 0 inside the binary cross-entropy loss to avoid exploding gradients.

• Optimizer and Learning Rate: We use Adam optimizer with a learning rate 1e− 5.

• Number of Epochs: We set the number of epochs as 30 in each fold.

• Early Stopping Monitor: To prevent the model from overfitting during the training,

we set the EarlyStopping function from the Keras library [40] where with the monitor

with ‘val loss’. During training for each epoch, the model is trained with the training

dataset and tested with the validation dataset. While the validation loss does not

decrease for four consecutive epochs, the model stops training and saves the best

model. We also empirically monitored that the optimal ‘val_loss’ provided the best

F11 score for the validation set.

4.3.2.2 Threshold Selection Since the models from each fold generate a sequence of

70 length vectors, with a floating value for each token, we need to set a threshold to con-

vert to binary (0 or 1) values. In text classification tasks, a threshold of 0.5 is a common

choice [155, 128]. We evaluated our validation set to identify optimum thresholds by

varying the threshold from 0.01 to 0.99 with a 0.01 increment. We aim to find the thresh-

old resulting in the best F11 score for the validation set. We empirically evaluated each

model with this threshold variation for the validation set in 10-fold. With the mean from
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Figure 7: Threshold variation for RoBERTa model (Using Validation Set)

10-folds, we found the optimal threshold value for each model to maximize F11 score. For

example, the RoBERTa model achieved the best F11 of 0.89 with a threshold of 0.12 with

validation data set. Figure 7 shows performance (precision, recall, and F1) variations for

the RoBERTa model against threshold variations using the validation set. We also noticed

that the F1−score for the toxic class remains the same from threshold 0.08 to 0.18 for the

RoBERTa model. As we take a variation of precision and recall measurement, the plot does

not behave like the general characteristics of precision and recall. Figure 7 also depicts that

increasing the threshold value decreased both precision and recall. After calculating the

optimal threshold from each model using the validation set, we use that optimal threshold

for the corresponding model to predict the test set. During the test set prediction, we also

did a similar 10-fold cross-validation and got the mean of each metric. Finally, we report

the results of each model’s performance with the optimal threshold in Table 14.
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Table 14: Experimental Results with the optimal threshold. The runtime of each model
and performances during each fold is included in the replication package [152]

Models Optimal Threshold Non-toxic words Toxic words
P0 R0 F10 P1 R1 F11

Lexicon-based NA 0.95 0.95 0.95 0.75 0.67 0.69
BERT-base 0.15 0.95 0.95 0.95 0.87 0.89 0.86
RoBERTa 0.12 0.92 0.92 0.92 0.87 0.93 0.88
DistilBERT 0.17 0.94 0.94 0.94 0.85 0.89 0.85
ALBERT 0.11 0.92 0.92 0.92 0.85 0.89 0.85
XLNet 0.10 0.90 0.90 0.90 0.79 0.88 0.81

4.3.3 Results with optimal threshold

We present the results with the optimal threshold for each model in table 14. In the first

row, we put the lexicon-based models’ performance. Many of the spans in our ground truth

contain some specific toxic words. Therefore, the lexicon-based model performed quite

well in our study and achieved 0.69 F11 score. This lexicon-based matching approach also

performed better than other transformer models (except the BERT-base model) for non-

toxic classes. However, there is a generalizability issue with using the matching approach

for detecting toxic spans.

Since our dataset is highly imbalanced, having a large number of empty spans, all of

the five transformer models achieved similar scores for P0, R0, and F10 in the range of

0.90 ∼ 0.95. For toxic tokens, RoBERTa outperformed the other four models and achieved

0.87 precision, 0.93 recall, and 0.88 F11 score. BERT-base model achieved the second best

performance with F1 = 0.86. DistilBERT and ALBERT models achieved similar perfor-

mance with 0.85 F11 score. However, DistilBERT has fewer parameters than other trans-

former models in our study, and this model is faster during fine-tuning than others. On the

other hand, XLNet lacks the performance for both toxic and non-toxic classes than other
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transformer-based models.

Finding 1: While all five transformer-based models achieved better performance than

the lexicon-based approach for toxic class, the RoBERTa model outperformed other models

with 0.88 F11 score.

4.3.4 Error Analysis from the best model

To provide more clarity on our model performance, we have manually analyzed the

misclassification with our best-performing model. Therefore, we ran our best-performing

RoBERTa model with a threshold of 0.12 to print misclassification instances. In our final

preprocessed dataset, we have a total of 39,438 sentences. During misclassified instance

printing, we have done 10 folds. For that reason, we can cover all the samples from

our dataset. We have found a total of 3406 (∼ 8.63%) sentences where misclassification

occurred. However, we categorized the errors into three different types because we are

doing a sequence classification problem. Table 15 depicts some examples of errors from

our model where the first column shows the error types, the second column is for ground

truth (GT) token span offsets, and the third column is for predicted token span offsets.

4.3.4.1 Partial Disagreement Since we are giving partial credit for the sequence clas-

sification metric, we decided to formulate a new error category as Partial Disagreement

(PD). We consider an error as PD where the ground truth span offset has some values and

the predicted span has some value with some disagreements. We found a total of 945

sentences (2.4% of the total sample and 27.75% of the error sample) in this category. The

first three examples of Table 15 represent the PD category. In the first example, we can see
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Table 15: Example of some errors

Error
Types

GT Span Predicted
Span

Actual Text Predicted Text

PD [14,15,16] [15,16] rest seems like too generic
name and it’s not clear in code
what the hell rest means.

rest seems like too generic
name and it’s not clear in code
what the hell rest means.

PD [1] [1,2] Damn grammar :-P Damn grammar :-P
PD [1,2] [1,2,3,4,5] O crap, hate me: do we still

need this one?.
O crap, hate me: do we still
need this one?.

FP [] [1] FC related code should be re-
moved.

FC related code should be re-
moved.

FP [] [1] stupid design on my part. stupid design on my part.
FP [] [7] As far as I understood,

WTF::HashMap does’nt sup-
port it.

As far as I understood,
WTF::HashMap does’nt sup-
port it.

FN [1] [] Evil spaces must die. Evil spaces must die.
FN [2,3,4] [] Your brain is deficient, please

fix, also done.
Your brain is deficient, please
fix, also done.

that our rater labeled the ‘what the hell’ phrase inside the toxic span, whereas the model

predicted ‘the hell’ as toxic.

4.3.4.2 False Negatives We consider the occurrence of False Negatives (FN) where the

sentence has single/multiple toxic span offsets but the model predicts no span. The high

number of FNs would cause a serious problem for the user of this model because it will

miss many toxic instances. Our model has a low amount of FNs where it can not predict

toxic span for 235 sentences (< 1% of our total samples, and 6.90% of the error sample).

The last two examples on the table 15 are FNs that contain some rare toxic phrases (i.e.,

‘Evil’, ‘brain is deficient’). For that reason, our classifier could not predict them as toxic.

Finding 2: False Positives instances dominated the list of misclassifications. Our models’

reliable performances can be attributed to lower instances of ‘Partial Disagreements’ and

‘False Negatives.’
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4.4 Discussion

Lesson #1: Toxic span selection is a highly subjective task for annotators: After the

initial labeling of the toxic spans, we found that two of our raters showed at least partial

disagreement for 928 samples. Human raters do not agree with all samples in selecting the

toxic spans. In Some cases, both annotators select the profane words, but one may miss

the associated words. For example,“doesn’t this just mean we fucked up the mips syscall.S in

bionic?” text where first labeler marked “fucked up” as toxic span and second annotators

marked only “fucked” as toxic span. In some of the other cases, self-directed anger words

such as ‘argh’ or ‘damn’ were mislabeled. Therefore, for similar labeling tasks, we would

recommend spending time building a rubric and agreed-upon understandings among the

annotators to achieve high IAA.

Lesson #2: Lexicon-based approach performs well but does not provide generaliz-

ability: We found that our lexicon-based matching approach achieved 0.69 F11 score.

Moreover, it performed better for non-toxic classes than the transformer-based supervised

training approaches because the lexicon-based approach has less probability of flagging a

non-toxic token as toxic (less FPs). Though it performed well in our dataset, using this

model for a new software engineering dataset may cause serious threats. This approach

is just token-matching and will miss the associated toxic tokens. Moreover, some tokens

do not always represent toxicity. For example, in I will kill you, where kill is toxic. But in

Make sure you kill the process first, here kill is not toxic. For that reason, the lexicon-based

approach may generate a large number of FPs.

Lesson #3: Transformer-based models are reliable and explainable for the FOSS com-
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munity: In our extensive evaluation, we found that the RoBERTa model outperformed oth-

ers by achieving 0.88 F11 score while the other three transformer models also performed

well for the toxic class. Since the sequence tagging approach is a challenging task for a

new domain, our model can be used by the project maintainers to flag the toxic portion of

a text. Moreover, since our best model has fewer false negative cases, FOSS maintainers

can use this tool to detect the actual toxic segment from a toxic comment. Apart from that,

we have used friendly post-processing, which provides an output with tagging: “you’re not

talking about neutron, (<toxic>) shut up (</ toxic>)”.

Lesson #4: Proactive toxic prevention tool development: Since ToxiSpanSE is highly

precise in identifying toxic excerpts, it is possible to leverage this model to proactively

discourage toxic texts. For example, a Gerrit code review plug-in can be developed that

highlights toxic excerpts similar to grammatical mistakes or typos while a review is being

written. Such highlights will make an author aware of potential toxic interpretations and

may initiate a self-reflection.

Although the project maintainers would decide on content moderation, they can use

our work to develop a tool to rephrase the toxic content to civil comments. Prior work

introduced this concept for online communication text [128]. The research community

from the SE domain and FOSS maintainers may think of this step to reduce the toxic

comments from developers’ communication.

4.5 Threats to Validity

A. Internal Validity: Our selection of code review dataset from a prior work [155] remains

a threat to validity. Biases in the curation of this dataset propagate to our study as well.



93

However, Sarker et al. [155]’s dataset remains the largest labeled toxicity dataset for the

SE domain, and it was curated using stratified sampling criteria to span various toxic

instances. Since this selected dataset contains only code review comments, it may not

adequately represent various other categories of developer communications such as issue

discussions or technical question answering. However, that threat may be minimal as we

focus on toxic phrases separate from a text’s technical contents.

B. Construct Validity: Annotator bias during manual labeling is a potential threat to valid-

ity. To mitigate this threat, we reused an already established rubric [155], used a gender-

diverse group of annotators, including one woman and one man, and arranged a discussion

with the annotators to build a shared understanding of the rubric before starting the an-

notation process. Moreover, we followed recommended practices of independent labeling

and conflict resolution through discussions. A high value of Krippendorff’s α (i.e., – 0.81,

‘almost perfect agreement’) indicates the reliability of our labeling process.

We followed the definition and rubric of toxicity established by Sarker et al. [155].

While Sarker et al’s conceptualization of toxicity is similar to the ones proposed by Raman

et al. [141] and Miller et al. [112], there are subtle differences between their rubrics

and ours. Therefore, models trained using our dataset may have degraded performance

on datasets released by other studies. Similarly, our models may encounter degraded

performance on SE datasets of other anti-social communication, such as incivility [63] and

destructive criticism [77]. However, this limitation does not apply to our tool pipeline, and

it can be retrained to fit other conceptualizations.

C. External Validity: Our dataset includes code review comments from four FOSS projects
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using Gerrit. While we do not have any evidence suggesting the code review interactions

on Gerrit are different from other review platforms, such as GitHub pull requests, Phabri-

cator, CodeFlow, and Critique. Our dataset may not adequately represent communication

on those platforms. Similarly, as ToxiSpanSE is trained on code review comments, it may

have degraded performance on other SE datasets, such as issue discussion, app reviews,

and technical question answering. However, this limit does not apply to our approach,

and using a dataset curated from other sources, ToxiSpanSE can be retrained to develop

context-specific detectors.

D. Conclusion Validity: Using the position-based metric threatens conclusion validity. To

mitigate this threat, we adopted our metrics from prior studies with span detection [128,

46]. Moreover, since most of our labeled instances are non-toxic, we separately report the

performance measures (i.e., P , R, and F1) for both toxic and non-toxic classes.

4.6 Conclusion and Future Work

In this work, we introduced ToxiSpanSE, a SE domain-specific explainable toxicity de-

tector that, in addition to identifying toxic texts, precisely marks the phrases responsible

for this prediction. We trained and evaluated ToxiSpanSE using 19,651 Code review com-

ments that were manually annotated to mark toxic phrases. We have fine-tuned five dif-

ferent transformers based on encoders that predict the probability of a word being toxic in

a given context. We also empirically identified optimum probability thresholds for each of

the five models. Our evaluation found a RoBERTa model achieving the best performance

with 88% F11 score. We have made our dataset, scripts, and evaluation results pub-

licly available at https://github.com/WSU-SEAL/ToxiSpanSE. In addition to facilitating

https://github.com/WSU-SEAL/ToxiSpanSE
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finer-grained toxicity analysis among SE communication, we hope this tool will motivate

explainable models for other SE domain-specific NLP classifiers, such as sentiment analysis

and opinion mining.
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CHAPTER 5 THE LANDSCAPE OF TOXICITY: AN EMPIRICAL
INVESTIGATION OF ANTISOCIAL BEHAVIORS ON GITHUB

5.1 Introduction

GitHub has become the most popular platform for hosting Free and Open Source Soft-

ware (FOSS) projects. In 2023, GitHub hosted more than 284 million public reposito-

ries [48]. As FOSS communities continue to grow, so do the interactions among con-

tributors during various software development activities, such as issue discussions, pull

request reviews, and Gitter messages. While these interactions are crucial to facilitating

collaborations among the contributors, sometimes they may cause harm due to anti-social

behaviors. Recent studies have investigated such interactions among FOSS developers

using various lenses, which include ‘toxicity,’ [112, 155, 153, 141, 151], ‘incivility’ [63],

‘destructive criticism’ [77], and ‘sexism and misogyny’ [169]. Although definitions of these

lenses differ, they all share a common attribute: the potential to cause severe repercussions

among the victims. Negative consequences of these antisocial behaviors include stress and

burnout [141], negative feelings [57, 63, 77], pushbacks [115], turnovers of long-term

contributors [53, 103, 186, 11], adding barriers to newcomers’ onboarding [141], and

hurting diversity, equity, and inclusion (DEI) by disproportionately affecting women and

other underrepresented minorities [77, 7, 116, 115]. Moreover, the prevalence of antiso-

cial behaviors present substantial challenges to the growth and sustainability of a FOSS

project.

Recent Software Engineering (SE) research has focused on characterizing antisocial be-

haviors and their consequences through surveys, interviews, and qualitative analyses [63,

112, 57, 77, 62]. In a sample of 100 GitHub issue comments, Miller et al. found en-
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titlement, arrogance, insult, and trolling as the most common forms of toxicity [112].

Destructive criticism is another anti-social behavior found in code reviews [77]. Although

destructive criticisms are rare, they may have severe repercussions, which include con-

flicts, demotivation, and even hindering the participation of minorities [77, 57]. Ferreira et

al.’s qualitative study of rejected patches in Linux kernel mailing lists reported frustration,

name-calling, and impatience as the most prevalent forms of incivility [63]. Another recent

workplace investigation reported inappropriate communication style as the primary cause

of incivility [140]. However, many of these studies suffer from limitations such as small

sample sizes or narrow focuses on specific projects [62, 112], organizations [137, 57], or

a small developer group [140], which raises questions regarding the external validity of

these findings at different contexts. We are also missing a quantitative empirical investi-

gation of how various measurable characteristics of project contexts and participants are

associated with the prevalence of various anti-social behaviors. Such an investigation is

necessary to formulate mitigation strategies for the broader FOSS ecosystem.

In response to this need, we have conducted a large-scale empirical investigation of

toxicity during Pull requests (PRs). We selected PR since it is a crucial mechanism to at-

tract contributions from non-members and facilitate newcomers’ onboarding among FOSS

projects [70]. PRs allow contributors to propose changes, which are then reviewed by

other community members. Due to the interpersonal nature of PR interactions and the po-

tential for dissatisfaction due to unfavorable decisions, PR interactions may raise conflicts

and anti-social behaviors. Among various anti-social lenses, we select the ‘toxicity,’ since

it has been most widely investigated [141, 112, 151, 153] and has a reliable automated

identification tool [155], which is a prerequisite for a large-scale empirical investigation.
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Following the toxicity investigation framework proposed by Miller et al. [112], we inves-

tigate four research questions to characterize i) the nature of toxicity, ii) projects that had

higher toxic communication than others, iii) contextual factors that are more likely to be

associated with toxicity, and iv) the participants, respectively. We briefly motivate each of

the research questions as follows.

RQ1: [Nature] What are the common forms of toxicity observed during GitHub Pull Re-

quests?

Motivation: Understanding the nature of toxicity may help project maintainers improve

guidelines and interventions to foster respectful and constructive interactions. Although

existing studies proposed various categorizations of SE domain-specific toxicity [112, 155]

and incivility [63], due to inadequate samples and potential sampling biases (i.e., only

locked issues), two key insights remain missing: i) whether these studies missed additional

forms of toxicity and ii) how frequently various toxicity categories occur on GitHub. RQ1

aims to fill in these missing insights.

RQ2: [Projects] What are the characteristics of the project that are more likely to encounter

toxicity?

Motivation: Does toxicity vary across project sponsorship, age, popularity, quality, do-

main, or community size? The identification of these factors will help project manage-

ment undertake context-specific mitigation strategies. Determining which projects are

more likely to suffer from toxicity may help a project’s management allocate resources

and define mitigation strategies. Moreover, this insight will help a prospective joiner select

projects.
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RQ3: [PR Context] Which pull requests are more likely to be associated with toxicity on

GitHub?

Motivation: Does toxicity occur during poor-quality changes, unfavorable decisions,

large changes, or delayed decisions? Understanding contextual factors is crucial to edu-

cating developers in avoiding specific scenarios.

RQ4: [Participants] What are the characteristics of participants associated with toxic com-

ments?

Motivation: Prior studies [112, 63] suggested that some participants are likelier to

author toxic comments due to their communication style or cultural background. On the

other hand, another study suggests that participants representing underrepresented groups

or newcomers are more likely to be targets [115]. RQ4 aims to identify personal charac-

teristics associated with being authors or victims of toxicity. This insight will help project

management prepare community guidelines to combat toxicity.

Research method: We conducted a large-scale mixed-method empirical study of 2,828

GitHub-based FOSS projects randomly selected based on a stratified sampling strategy.

Our sample includes 16 million pull requests, 69.5 million issue comments, and 32 million

PR comments. Using ToxiCR [155], a state-of-the-art SE domain-specific toxicity detector,

we automatically classified each comment as toxic or non-toxic. Additionally, we manually

analyzed a random sample of 600 comments to validate ToxiCR’s performance and gain

insights into the nature of toxicity within our dataset. With ToxiCR demonstrating a reli-

able performance, we trained multivariate regression models to explore the associations

between toxicity and various attributes of projects, PR contexts, and participants.



100

Key findings: We found 11 forms of toxic comments on GitHub PR review comments, with

object-directed toxicity being a new form unreported in prior studies. The results of our

study suggest that profanity is the most frequent toxicity on GitHub, followed by trolling

and insults. While a project’s popularity is positively associated with the prevalence of

toxicity, its issue resolution rate has the opposite association. Corporate-sponsored projects

are less toxic, but gaming projects are seven times more likely than non-gaming ones to

have a high volume of toxicities. FOSS developers who have authored toxic comments in

the past are significantly more likely to repeat them and become toxicity targets.

Novelty of this study: This study differs from prior academic empirical investigations in

three ways. First, prior studies suffer from sampling biases, such as locked issues [112,

141] or rejected patches [63]. Therefore, characteristics of toxicity outside these known

negative contexts are missing. Second, these investigations are qualitative. While these

investigations are crucial to forming hypotheses, whether these hypotheses apply to a

broader spectrum of FOSS projects remains unanswered. Finally, these studies explored

a limited set of factors, whether other plausible factors, such as community size, project

popularity, code complexity, and unresolved defects associated with toxicity, remain unan-

swered.

Contributions The primary contributions of this study include:

• An empirical investigation of various categories of toxic communication among GitHub

Pull requests.

• A large-scale empirical investigation of factors associated with toxicity on GitHub.

• Actionable recommendations to mitigate toxicity among FOSS projects.
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Figure 8: An overview of our research method

5.2 Research Method

Figure 8 provides an overview of our research methodology, detailed in the following

subsections.

5.2.1 Project Selection

We leverage the GitHub search tool developed by Dabic et al. [47], which enables

filtering based on various criteria such as the number of contributors, programming lan-

guage, forks, commits, and stars to select candidate projects. Following recommendations

by Kalliamvakou et al. [93], we searched for projects satisfying the following six criteria:

i) uses one of the top ten programming languages on GitHub: Java, C, C++, Python,

JavaScript, C#, Go, PHP, Typescript, and Ruby; ii) has at least 20 contributors, iii) is pub-

licly available with an open source license; iv) at least two years old, v) has at least 20 PRs;

vi) and has at least 10 stars. The first five criteria ensure the selection of FOSS projects with

adequate analyzable interpersonal communication among the contributors. The remain-

ing criterion reduces the search space; without this filter, the number of projects grows

exponentially but adds only trivial FOSS projects.

Our search conducted in September 2022 found 89,744 projects. We exported the re-
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sults as a CSV file and computed each project’s activity level as the PRs per month. We di-

vided the projects into three groups based on Pull Request Frequency (PRF) on the GitHub

– i) Low PRF (PRF-L): if it has less than 8 PRs per month (i.e., less than 2 PRs/week);

ii) Medium PRF (PRF-M): if it has between 8 -31 PRs per month (i.e., 2-8 PRs/week);

and iii) High PRF (PRF-H): if it has more than 32 PRs per month (i.e., >8 PRs/week).

These two thresholds, 8 and 32, represent approximately 75 and 90 percentiles based

on activity level, respectively. We randomly selected 800 projects from each of the three

groups. We chose this sample size to satisfy a 3% margin of error with a 95% confidence

interval [190]. Since prior studies have suggested higher occurrences of toxicity among

gaming projects [112], we also added projects with the topic ‘game.’ We found 1,000 such

projects since GitHub search API limits access to search results to the first 1,000. However,

most projects did not satisfy criteria such as a minimum number of participants or PRs.

Hence, the gaming group includes 439 projects, adequate for 95% confidence interval (CI)

and a 5% Margin of Error [190]. However, some projects were no longer available for

mining (e.g., deleted or moved). Therefore, our final dataset contains 2,828 projects.

5.2.2 Dataset preparation

We wrote a Python Script using the PyGithub library [88] to mine all the PR details,

metadata, PR labels, user information, PR review comments, and issue comments from the

selected projects and store them in a MySQL database. Our data mining started in October

2022 and completed in January 2023. Our dataset requires approximately 172 GB of

storage. Our dataset includes approximately 16.1 million (M) PRs, 69.5 M issue comments,

32 M PR comments, and 1.3 M unique users. We also mined all publicly available user

information, including profile photos, emails, full names, and user types. We exclude all
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the interactions from Bot accounts (i.e., userType=‘Bot’). However, we also noticed many

bot accounts using incorrect flags (i.e., userType =‘User’). Therefore, we filtered accounts

with bot-specific keywords (bot, robot, auto, Jenkins, static, etc.) in user names and full

names. We manually inspected the filtered accounts to make a final determination.

5.2.3 Toxicity classification scheme

Anti-social behaviors within FOSS communities, which have been investigated by mul-

tiple recent studies [155, 112, 140, 141, 63, 168, 77, 57], conclude that such behaviors in

the FOSS context are different from the general domain such as social media. These stud-

ies have identified various categories of anti-social behaviors through qualitative analyses.

To answer RQ1, we focused on aggregating various categories of anti-social behaviors to

prepare our manual labeling scheme. We started with consolidating categories derived

from ‘toxicity’ studies [141, 112, 155, 137]. During this process, we identified overlapping

concepts based on definitions included in those papers and merged those into a single

category. We noticed a conflict as ‘self-deprecation’ was marked as non-toxic by Sarker

et al. [155], while Miller et al. [112] marks ‘self-directed pejorative’, a similar concept as

toxic. We follow Sarker et al.’s (i.e., our first study at Chapter 3) definition, marking it as

toxic only if it involved profanity since we use their dataset. Additionally, Ferreira et al.’s

incivility lens, which encompasses a broader spectrum of anti-social behaviors, including

toxicity, also includes frustration, impatience, irony, mocking, name-calling, threat, and

vulgarity [63]. Based on their definitions, ‘name-calling, threat, mocking, and vulgarity’

overlap with existing categories identified by Miller et al. and Sarker et al. As such, these

were considered toxic. Although ‘irony,’ ‘frustration,’ and ‘impatience’ are not a part of

these toxicity schemes, they may fit existing categories, such as trolling, arrogance, and
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insult, depending on context. It’s worth noting that existing SE studies have used different

terminologies to study these subjective social constructs, and an agreed-upon scheme or

definitions is currently missing. At the end of this step, we prepared our manual label-

ing scheme of 10 categories (Table 20) with a broader definition for each group based on

current studies.

5.2.4 Automated identification of toxic comments

We select ToxiCR [155] for automated classification since it is i) trained on large-scale

training data, ii) developed as a reusable standalone tool in contrast to Jupiter notebook

format used by some of the alternatives, iii) is publicly available on GitHub, iv) provides

a well-defined interface to conduct a large-scale classification required by this study, v)

trained on Code review data which is similar to pull requests that this study aims to ana-

lyze, and vi) reports the best performance according to its evaluation with 95.8% accuracy,

90.7% precision, 87.4% recall, and an 88.9% F1-score. ToxiCR provides the toxicity proba-

bility of a text from 0 to 1, and its authors recommend using a threshold >= 0.5 to consider

a text as toxic.

Evaluation of ToxiCR: Prior research on SE domain-specific NLP tools [122, 121] recom-

mends independent assessments before application on new settings. Therefore, we con-

ducted an empirical evaluation to assess ToxiCR’s reliability on our dataset. To achieve this

goal, we randomly selected 600 PR comments marked as toxic by ToxiCR. This sample ade-

quately provides results within a 2.6% margin of error and 95% confidence interval [190].

We also use these same samples for our qualitative toxicity analysis in Section 5.3.1.

Precision: Two raters independently labeled those 600 samples as toxic or non-toxic and

resolved the conflicts after a discussion. To mitigate the bias of the labeling process, two
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labelers follow the toxicity rubric from [155]. The agreement between the two labelers

is 95.8%, and Cohen’s kappa [41] value is κ = 0.80, which is ‘substantial’. After conflict

resolution, 532 comments were labeled toxic, suggesting 88.8% precision. This result is

within the margin of error (i.e., 2.6%) of ToxiCR’s claimed precision (90.7%) [155].

Recall: Evaluation of recall is also essential to ensure that ToxiCR does not miss many

positive instances. On this goal, we focused on finding existing labeled toxicity datasets

curated from GitHub issue requests. We did not use Raman et al.’s dataset since it has only

106 toxic instances [141]. We chose Ferreira et al.’s dataset of locked GitHub issues, which

includes 896 uncivil sentences out of 1,364 [62]. According to Ferreira et al., incivility is

a superset of toxicity [63]. While all toxic comments are uncivil, some uncivil comments

(e.g., irony and impatience) may not fit the toxicity lens. To encounter this challenge,

two authors relabeled the 896 uncivil comments based on Sarker et al.’s toxicity labeling

rubric. The raters achieved an inter-rater agreement of κ = 0.76 and resolved the conflicts

through a mutual discussion. On this dataset, ToxiCR achieved 87% recall, which is also

within the sampling margin of error of ToxiCR’s reported recall (i.e., 87.4%).

Automated classification We are satisfied with ToxiCR’s performance in our context,

so we classified all the PR and issue comments, totaling 101.5 million, using the best-

performing configuration reported by its authors. ToxiCR found approximately 756K toxic

comments (0.74%) from our dataset.

5.2.5 Manual categorization of toxic comments

Using the 10 class classification scheme described in Section 5.2.3, two of the authors

independently placed the 532 toxic comments identified during ToxiCR’s evaluation (Sec-

tion 5.2.4) into one or more groups. We also included the ‘Others’ category to label toxic
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comments that do not fit the existing ten categories. We measured the inter-rater reliability

of this multiclass labeling using Krippendorff’s alpha, which was 0.35, indicating a ‘Fair’

agreement. We noticed higher ratios of disagreements since, theoretically, the number

of possible labeling for a single instance is 211. Conflicting labels were resolved through

mutual discussions. After conflict resolution, the raters reviewed the 34 instances from

the ‘Others’ group to identify missing categories. The new category identified is ‘Object-

Directed Toxicity,’ which includes anger, frustration, or profanity directed toward software,

products, or artifacts. For example, “also the mask sprite is beyond horrid, I might have

something that could do better..” represents this form. With this category, they went

through the labeled instances again to identify other cases that may also fall under this

category since a text can fall under multiple categories. They identified 49 instances be-

longing to this new category in total.

5.2.6 Attribute selection

Table 16, Table 17, and Table 18 list attributes selected to answer RQ2, RQ3, RQ4

accordingly those are introduced in Section 5.1. In addition to each attribute’s definition,

Table 16, table 17, and table 18 list why an attribute may be associated with toxicity. We

selected this set of attributes since prior studies on code reviews and anti-social behaviors

suggest their likelihood of association with toxicity contexts.

RQ2: Project We select eleven project characteristics attributes based on prior studies

on toxicity and incivility [141, 112, 62, 63]. These 11 attributes in Table 16 characterize a

project’s activity, popularity, domain, governance, and age.

RQ3: PR Context We select nine contextual attributes in Table 17 based on prior stud-

ies [112, 175, 141, 171, 57, 140]. These attributes characterize the type of change, out-
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Table 16: The list of attributes selected to investigate their association with project
characteristics (RQ2).

Variable Name Definition Rationale
PR/month Average number of PRs per

month.
Indicates the volume of development
activity. Active projects may have
a higher probability of toxic interac-
tions [112].

issues/month Average number of issues
per month.

A higher number of bugs indicates
the lack of quality, which may cause
frustration among users and develop-
ers [112, 141].

commits/month Average number of com-
mits per month.

Commit is another indication of the
volume of development activity. High
activity may cause burnouts [141],
and lack may cause frustration among
users [112].

release/month Average number of releases
per month.

Frequent releases may satisfy the cus-
tomers to decrease toxicity, and vice
versa [45].

issue resolution
rate

Percentage of issues re-
solved.

Users may become frustrated due to
issues affecting them not being re-
solved [112].

isCorporate Whether the project is
sponsored by a corpora-
tion.

Corporate projects may have less tox-
icity than non-corporate ones due to
the consequences of HR policy viola-
tions [141].

project age Number of months since a
project’s creation.

Older projects showed more toxic-
ity [141].

member count Number of users with write
access.

Toxicity increases with community
size due to diverse views and higher
potential conflicts [14].

isGame Whether the project is
gaming or not.

Prior studies have found prevalence
of toxicity among gaming communi-
ties [112, 16, 125, 17].

stars Number of stars on GitHub
project.

Popularity shows users’ interests.
Scrutiny and expectations increase
with popularity and therefore stress
on developers [141].

forks Number of forks on GitHub
project.

Fork is another measure of project
popularity [196].
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come, complexity, required review /resolution efforts, completion time, and number of

identified issues in a PR.

RQ4: Participant We select six participant attributes in Table 18 based on prior stud-

ies [112, 168, 42, 115, 140, 62]. These attributes represent a participant’s GitHub tenure,

project experience, gender, and communication history. We compute each attribute for

both the author and the target of a comment.

5.2.7 Attribute calculation

To investigate RQ3 and RQ4, it is necessary to compute attributes at pull request (PR)

and comment levels, respectively. Given that our dataset comprises 16 M PRs and 101.5

M comments, calculating the PR and comment-level attributes listed in Table 16, Table 17,

and Table 18 for the entire dataset would be exceedingly time-consuming and resource-

intensive. Therefore, we reduced the sample size for RQ3 and RQ4 by randomly selecting

385 projects from the three project groups (i.e., ‘PRF-L’, ‘PRF-M’, and ‘PRF-H’). We choose

this sample size to satisfy a 5% error margin and 95% confidence interval [190]. This

sample of 1,155 projects includes 6.3 M PRs, 30 M comments, and 416 K users. We wrote

Python scripts and MySQL queries to compute the 26 attributes listed in Table 16, Table 17,

and Table 18 based on their definitions. While most attributes are straightforward to

calculate, five require additional heuristics, as defined in the following.

Gender: We adopted a similar protocol to Sultana et al. [171] to automatically

predict users’ genders. In this process, we have used genderComputer [181] and Wiki-

Gendersort [19] tools to resolve the gender from a user’s name, preferred pronoun, and

location if available. We have also downloaded a user’s GitHub avatar and applied an

automated human face detection model [72]. Further, we used a pre-trained photo to
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Table 17: The list of attributes selected to investigate their association with Pull request
context (RQ3).

Variable Name Definition Rationale
commit count Number of commits in a

PR.
Large number of commits increases re-
view effort [175]. Increased efforts
may frustrate reviewers, cause delays,
and, therefore, also frustrate the au-
thor.

number of
changed files

The number of files
changes in each PR.

A higher number of file changes re-
quires a longer review time [95] and
comprehension difficulty.

code churn
(log)

The total number of rewrit-
ten or deleted code.

There is a higher probability of defects
in the code due to a high number of
changed lines [118, 119], and it may
be associated with a higher number of
toxic comments.

isAccepted Whether the code review is
accepted or rejected.

Developers used more toxic comments
in rejected codes/patches [63].

isBugFix Whether the code review is
for fixing a bug or not.

Issue discussions may instigate toxic-
ity when the resolution is not liked by
affected parties [62, 112].

change entropy
(log)

A measure of change com-
plexity, which estimates
how much dispersed a
changeset is among multi-
ple files [175].

Complexity of code change affects re-
view time and participation [175].
Moreover, unnecessary complexity
may be a sign of a poor quality
change, which may receive harsh cri-
tique [140].

review interval Time difference from the
start of the code review to
the end.

Delayed code reviews are more likely
to cause frustration for develop-
ers [57, 177].

number of itera-
tions (num iter)

Total number of iterations
(i.e., number of times
changes requested) in a
PR.

Higher number of iterations frustrates
both developers and reviewers due to
additional time [177]. Higher itera-
tion also indicates the lack of com-
mon understandings [56] and poten-
tial disagreements [115].

review com-
ments

The total number of review
comments from reviewers
in a PR.

Each review comment may indicate a
change suggestion. A higher number
of review comments indicate signifi-
cant concerns from the reviewers over
its quality, which often causes toxic-
ity [140].
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Table 18: The list of attributes selected to investigate their association with participants’
characteristics (RQ4).

Variable Name Definition Rationale
isWoman Whether the person is a

woman
Prior studies have found women and
marginalized minorities as frequent
victims of toxicity [141, 77].

isMember Whether the person is a
project member or not.

Project members are the authors of
many toxic comments in replying to
the outside members’ query [42, 112].

isNewComer Whether the person is a
newcomer to the current
project.

Newcomers may get frustrated due to
delays [166] and unfavorable deci-
sions [63].

GitHub tenure Age of GitHub account, in
terms of the number of
months, at the time of an
event.

Miller et al. reported toxic comments
from accounts with no prior activity
on GitHub [112].

project tenure Tenure with the current
project, in terms of the
number of months.

Although long-term members of a
project are more committed to main-
taining a professional environment in
a community, Miller et al. found toxic
comments from them [112]. More-
over, they may be targets if their
decisions are not liked by issue re-
porters [62].

toxicity/month The total number of toxic
comments a user posts per
month.

Miller et al. found many repeat of-
fenders, as many FOSS developers
have toxic communication styles [112,
11].
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gender-resolution model [58] to predict the user’s gender. Conflicts between the two ap-

proaches were resolved by manually investigating users’ profiles. Finally, we successfully

resolved 75.4% of the total users (92% with full names). We only include gender-resolved

users for RQ4.

Project Member: Following the recommendation of Gousios et al. [71], we consider a

user a project member if that user has write access (i.e., merged at least one PR or created

an intra-branch PR) to the repository.

GitHub Tenure and Project Tenure: We compute a user’s GitHub tenure at an event

as the months between their account creation and the event’s timestamp. Similarly, we

calculate a developer’s project tenure during each project interaction (e.g., commit, pull

request, or comment).

Newcomer: Following the definitions of prior studies [166, 167], we consider a user

as a newcomer to a FOSS project until they have got their first PR accepted to this project.

5.2.8 Regression Model

We train four multivariate inferential regression models to analyze associations be-

tween the toxicity and the 26 attributes listed in Table 16, Table 17, and Table 18. The

following subsections detail the three regression models to answer RQ2, RQ3, and RQ4.

5.2.8.1 Multinomial Logistic Regression for RQ2 We found training a regression model

for RQ2 challenging since computing various project characteristics variables at the cre-

ation timestamp of a comment requires the entire event log for a project (e.g., when a

new star was added), which is resource-intensive to mine due to the enormous size of our

dataset. While Google’s BigQuery hosts a dataset of GitHub events, it would be expen-
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Table 19: Model fit measured using Psuedo R2 and model significance evaluated using
the log-likelihood ( χ2) test for the bootstrapped logistic regression models. A 95%

confidence interval is also reported for each measure inside the brackets.

Project Category Research Question Measure 95% Confidence Interval

PRF-L
RQ3 Pseudo R2 0.16 [0.15, 0.17]

χ2 (lrtest) 1.7x103*** [1.5x103, 1.8x103]

RQ4 (author) Pseudo R2 0.01 [0.01 ,0.01]
χ2 (lrtest) 1.4x102*** [1.2x102, 1.6x102]

RQ4 (target) Pseudo R2 0.01 [0.01 ,0.01]
χ2 (lrtest) 1.1x102*** [0.9x102, 1.2x102]

PRF-M
RQ3 Pseudo R2 0.19 [0.19, 0.20]

χ2 (lrtest) 1.2x104*** [1.2x104, 1.3x104]

RQ4 (author) Pseudo R2 0.02 [ 0.02, 0.02]
χ2 (lrtest) 1.1x103*** [1.1x103, 1.2x103]

RQ4 (target) Pseudo R2 0.01 [ 0.01, 0.01]
χ2 (lrtest) 4.7x102*** [4.1x102, 5.2x102]

PRF-H
RQ3 Pseudo R2 0.18 [0.18, 0.19]

χ2 (lrtest) 1.0x105*** [ 1.0x105, 1.1x105 ]

RQ4 (author) Pseudo R2 0.09 [0.09, 0.09]
χ2 (lrtest) 7.8x104*** [ 7.8x104, 7.9x104 ]

RQ4 (target) Pseudo R2 0.11 [0.11, 0.11]
χ2 (lrtest) 7.3x104*** [ 7.2x104, 7.4x104 ]

*** , **, and * represent statistical significance at p < 0.001, p < 0.01, and
p < 0.05 respectively.
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sive to query this service. Therefore, we used aggregated attributes over the lifetime of

a project. We calculated toxicity per hundred comments (percent_toxic) for each project

over its lifetime and used it as the dependent variable for RQ2. However, if the dependent

variable is a ratio, a model can identify spurious associations [98]. Following the recom-

mendation of Long and Freese [107], we transform the percent_toxic variable into a three-

level categorical variable named toxicity_group. We selected the number of categories and

thresholds for this grouping based on the inflection points9 in the cumulative distribution

curve. The ‘Low toxic’ group includes 324 projects with percent_toxic < 0.02%. The

2,082 projects from the ‘Medium toxic’ group have 0.02 ≤ percent_toxic < 1%. The re-

maining 421 projects belong to the ‘High toxic’ group with percent_toxic ≥ 1%. Since

toxicity_group has three levels, we use a Multinomial Logistic Regression (MLR) model,

where toxicity_group is the dependent variable and 11 project characteristics attributes

are independent.

5.2.8.2 Bootstrapped Logistic Regression for RQ3 and RQ4 For RQ3, the depen-

dent variable is HasToxicComment, set to 1 if a PR has at least one toxic comment and

0 otherwise. For RQ4, we use participant attributes computed at the comment level as

independents. We use isToxic as the dependent, 1 if the comment is toxic, and 0 otherwise.

We train two models for RQ4, one with the author’s attributes as the independents and

the other with the target’s attributes. Since the dependents are binary for RQ3 and RQ4,

we use Logistic Regression models. As the dataset of RQ3 and RQ4 consist of a rare bi-

nary outcome variable (i.e., HasToxicComment, isToxic), we use a bootstrapped regression

9points of a curve at which a change in the direction of curvature occurs
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modeling technique [189]. In this technique, we choose a desired ratio between the mi-

nority and the majority. We randomly downsample the majority until the desired ratio is

reached. With this sample, we fit a logistic regression model, measure its fit, and compute

regression coefficients. This process is repeated 100 times, and we record the results of

each iteration in a dataset. We report median and 95% confidence interval for model fit

and regression coefficients. We also explored various ratios between the minority and the

majority and found that the model’s goodness of fit reduces with the increment of the ma-

jority’s share. We chose a ratio of 1:10 since increasing the majority’s share beyond that

sometimes produced unreliable models according to the log-likelihood test.

5.2.8.3 Correlation and redundancy analysis For an inferential regression model,

multicollinearity, which occurs when two independent variables are highly correlated to

each other, is a threat to validity. We used the variable clustering approach suggested by

Sarle [156] to identify multicollinearity. With this approach, we create a hierarchical clus-

ter representation of independents using Spearman’s rank-order correlation test [163]. As

recommended by Hinkle et al. [79], we set the cutoff value at |ρ| = 0.7 for the corre-

lation coefficient. Only the explanatory variable with the strongest correlation with the

dependent was chosen from a cluster of variables with |ρ| ≥ 0.7.

5.2.8.4 Model analysis We also use the Log-likelihood test (lrtest) to assess whether a

model significantly differs (Chi-Square, p < 0.05) from a null model and can be reliably

used for inference. We evaluate each model’s goodness-of-fit using Veall-Zimmermann

Psuedo-R2, with a higher R2 value indicating a better fit. We use the Odds ratio (OR)
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to quantify the association between the dependent and independents and estimate effect

size. For a binary independent (e.g., isGame), OR indicates the odds of an outcome if the

independent variable changes from 0 to 1, while all other factors remain constant. For a

continuous variable (e.g., project age), OR indicates an increase or decrease in odds for the

dependent with one unit change in the factor. In simple terms, OR >1 indicates a positive

association and vice versa. We use the p-value of the regression coefficient to assess the

significance of an association with p < 0.05, indicating a statistical significance. Table 19

shows goodness-of-fit measured with Pseudo-R2 and results of Log-likelihood tests for the

three regression models trained for RQ3 and RQ4. Since we bootstrapped each model 100

times, we report median and 95% confidence intervals for each model. The results of lrtest

indicate that all models are significantly better than a null model and are reliable to infer

insights to answer our RQs.

5.3 Results

The following subsections detail the results of the four research questions.

5.3.1 RQ1: Nature of toxicity in PR Review Comments

Table 20 shows the distributions of 11 forms of toxicities among our manually labeled

dataset of 532 PR review comments. Similar to Miller et al.’s investigation, we found

profanity (i.e., severe language, swearing, cursing) as the most common form, with more

than half of the sample (≈ 58%) belonging to it. Words such as shit, fuck, ass, crap, suck,

and damn are the most common forms of profanities in our sample. We found trolling

as the second most common form with 18%, followed by insult, self-deprecation, and

object-directed toxicity. Identity attacks, insults, and threats, which are regarded as severe
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Table 20: The most common forms of toxicities within our sample of manually labeled
532 PR comments

Type Example Count‡ Ratio
Profanity [153,
63, 112, 155]

“You know, at some point, github fucked me
over. In Visual Studio, this was just fine,
wtf....”

311 58.45%

Trolling [112, 63] “@clusterfuck There’s a difference between be-
ing in cryogenics and not in cryogenics you big
nerd”

96 18.04%

Insult [112, 155] “Acknowledge that the vote wasn’t en-
tirely singulo shitposters > ARE YOU
SCHIZOPHRENIC?? Jesus dude why are
you even here still”

92 17.3%

Self-
deprecation [112]

“@ComicIronic Okay, I’ll fix it when I fix my
shitty code, which will have to happen tomor-
row”

67 12.6%

Object Directed
Toxicity

“the PR has fallen into conflict hell, I’ll be clos-
ing this and re-opening some of its changes
shornestly”

49 9.21%

Entitled [112] “Again I didn’t break it Are you fucking stupid
lol > merge your update into PR > buckling
doesn’t work”

17 3.2%

Identity at-
tack [57, 63, 155]

“Fuck those argentinians. Did you test it?” 17 3.2%

Threats [63, 112,
155]

“Done - I can always revoke your access if you
mess things up ;”

12 2.25%

Obscenity “dude you need to spend less time on program-
ming and more time with women”

6 1.1%

Arrogance [112] “Araneus is shit and generic as hell I think
steely is an acceptable name”

5 < 1%

Flirtation [155] “Frigging love you Niki. Seriously” 5 < 1%
‡ -since a text can belong to multiple categories, the sum of the categories is greater than
our sample size.
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toxicities [73], were found among ≈22% of the samples. We also noticed over two-thirds

of our samples ≈72% belonging to multiple forms. For example, “:laughing: Holy shit,

you are fucking stupid. It is an extremely simple proc with a switch. Seriously, did you

even look at the code? Next, you’ll tell me all switches are copypaste.” represents both

profanity and insult. While toxicity on social media has higher occurrences of flirtation

and obscenity [76, 73], we found ≈2% such cases in our sample.

Key finding 1: Profanity seems to be the dominant form of toxicity in GitHub PRs. Severe

toxicities, such as insults, identity attacks, and threats, represent ≈ 22% cases. Flirtation

and obscenity were less common in our sample, unlike other online mediums.

5.3.2 RQ2: Project characteristicss

Two factors (i.e., forks and pulls per month) were dropped due to multicollinearity

and were not included in our MLR. We estimated the fit of our MLR with NagelKerke R2

=0.224. Our Log likelihood test results suggest that this model significantly differs (χ2

=545.16, p < 0.001) from a null model. In addition to modeling the probability of a spe-

cific result based on a group of independent variables, MLR also enables the assessment

of the probability of transitioning to a different dependent category from the current one

when a specific independent variable changes [15]. Hence, we set the ‘Low toxic’ projects

as the reference group in MLR and compute the odds of a project moving to the ‘Medium

toxic’ or ‘High toxic’ group if one of the independents changes by a unit. Table 21 shows

the result of our MLR model, with OR values for each factor. Our results suggest that

projects with corporate sponsorship (isCorporate) are significantly less likely to belong to

the ‘Medium toxic’ or ‘High toxic’ groups than the ‘Low toxic’ group. HR rules, professional
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Table 21: Results of our MLR model to identify associations of project characteristics with
toxicity. We set the ‘Low toxic’ group as the reference to compute odds ratios. Hence,
OR > 1 indicates a higher likelihood of a project transitioning to the ‘Medium toxic’ or

‘High toxic’ group with a unit increment of that factor and vice versa.

Attribute Medium toxic High toxic
OR p OR p

isCorporate 0.888 0.000∗∗∗ 0.47 0.000∗∗∗

member count 0.999 0.821 1.0001 0.754
stars 1.001 0.000∗∗∗ 1.001 0.000∗∗∗

issues/month 1.001 0.234 0.998 0.061
project age 1.004 0.000∗∗∗ 1.009 0.000∗∗∗

commits/month 1.0001 0.316 1.0001 0.447
release/month 1.003 0.310 0.998 0.813
bug resolution 0.204 0.000∗∗∗ 0.985 0.000∗∗∗

isGame 0.486 0.000 ∗∗∗ 7.259 0.000∗∗∗

*** , **, and * represent statistical significance at p < 0.001,
p < 0.01, and p < 0.05 respectively.

codes of conduct, and the potential for job loss may be the reasons. We also notice a signifi-

cantly higher level of toxicity among the popular projects ( i.e., stars). Popularity increases

pressure on the contributors to deliver new features and maintain quality. However, a

rapid development pace can cause stress, burnout, and toxicity. We also noticed that the

prevalence of toxicity significantly increased with project age. Our manual investigation

of sample projects suggests staleness (i.e., lack of response to issues or PRs) as a frequent

reason. We found no significant association between toxicity and development activities

(i.e., commits/month and releases/month) and project quality (i.e., issues/month). On the

other hand, issue resolution rates (i.e., percentage of resolved issues) significantly reduce

toxicity, as projects with higher rates are more likely to belong to the ‘Low toxic’ group than

the ‘Medium toxic’ or ‘High toxic’ group. Supporting observations from prior studies [112],

we also noticed the significantly higher prevalence of toxicity among gaming projects, as a

gaming project is seven times more likely to belong to the ‘High toxic’ group than the ‘Low

toxic’ or ‘Medium toxic’ group.
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Key finding 2: While popularity and staleness are positively associated with the preva-

lence of toxicity, issue resolution rate has the opposite association. While corporate-

sponsored projects are ’low toxic,’ gaming projects belong to the opposite spectrum.

5.3.3 RQ3: Pull request context

One of the nine pull request context factors (i.e., the number of changed files) was

dropped due to multicollinearity. Table 22 shows median odds ratios with 95% confidence

intervals for the remaining eight factors based on our bootstrapped logistic regression mod-

els repeated over 100 times. All eight factors show significant associations for the PRF-H

group (i.e., PR/month > 32). For this group, bug fix PRs, code churn, review interval, the

number of review comments, the number of review iterations, and change entropy are pos-

itively associated with toxicity. On the other hand, the number of commits and acceptance

decisions are negatively associated. Similarly, we noticed almost identical associations for

the PRF-M group (i.e., 8 < PR/month < 32), except isBugFix does not have a statistically

significant association. For the PRF-L group (i.e., PR/month < 8), only three factors have

statistically significant associations with toxicity, where the review interval and the num-

ber of review comments have positive ones. In contrast, isAccepted has a negative one.

The directions of associations mostly follow our rationale included in Table 17 for these

factors. However, contrary to our expectations, we noticed the number of commits in a PR

negatively associated with toxicity among both PRF-M and PRF-H groups. We hypothesize

that this negative association may be due to large code reviews (i.e., ones including several

code commits) being less likely to have discussions [175], and the lack of discussions may

be a reason.
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Table 22: Associations between pull request contexts and toxicity. Values represent the
median odds ratio for each factor with 95% confidence intervals inside brackets.

Attribute PRF-L PRF-M PRF-H
isBugFix 1.01[0.99, 1.05] 1.02 [1.01, 1.03] 1.06*** [1.06, 1.07]
commit count 1 [1, 1.01] 0.99* [0.99, 0.99] 0.99*** [0.99, 1]
code churn
(log)

1.11 [1.10, 1.12] 1.13*** [1.13, 1.14] 1.11*** [1.11, 1.11]

review interval 1.11*** [1.11, 1.12] 1.17*** [1.17, 1.17] 1.20***[ 1.20, 1.20]
review com-
ments

1.06*** [1.05, 1.07] 1.06*** [1.05, 1.06] 1.04*** [1.04, 1.04]

isAccepted 0.77*** [0.75, 0.80] 0.71*** [ 0.70, 0.73] 0.93*** [0.93, 0.94]
num iter 1.01 [0.99, 1.03] 1.01*** [1.01, 1.02] 1.01*** [1.01, 1.01]
change en-
tropy (log)

1.57 [1.51, 1.67] 1.35*** [1.32, 1.37] 1.26*** [1.25, 1.27]

*** , **, and * represent statistical significance at p < 0.001, p < 0.01, and p < 0.05
respectively.

Key finding 3: Accepted PRs are less likely to have toxicity. On the contrary, code churn,

review intervals, the number of review comments, change entropy, and the number of

review iterations are positively associated with toxicity on GitHub.

5.3.4 RQ4: Participants

We train two types of regression models, one to investigate the characteristics of per-

sons authoring toxic comments and the other with the targets. Similar to the RQ3, we

train bootstrapped logistic regression models repeated over 100 times. Table 23 shows the

odds ratios for each factor with 95% confidence intervals for the three PRF-based project

groups.

Characteristics of authors of toxic comments: Our results suggest significantly lower

odds of women authoring toxic comments among PRF-L and PRF-H groups. Similarly,

newcomers have lower authoring odds among PRF-M and PRF-H groups. Among all three

groups, project members are significantly less likely to author toxic comments, and the
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Table 23: Associations between characteristics of authors and targets and toxicity. Values
represent the median odds ratio for each factor with 95% confidence intervals inside

brackets.

Project Cate-
gory

Attributes RQ4: Author RQ4: Target

PRF-L

isWoman 0.80** [ 0.71, 0.793] 0.48*** [ 0.46, 0.50]
isNewComer 1.09 [ 1.05, 1.14] 0.91 [0.88, 0.95]
isMember 0.89** [0.87, 0.92] 1.12* [1.09, 1.15]
github tenure 0.99*** [ 0.99, 0.99] 1.01 [0.99, 1.01]
project tenure 1.01** [1.01, 1.01] 0.99* [0.99, 0.99]
toxicity/month 1.06*** [1.05, 1.07] 1.99*** [ 1.81, 2.19]

PRF-M

isWoman 1 [0.96, 1.01] 0.95 [ 0.93, 0.98]
isNewComer 0.88*** [0.86, 0.89] 0.90***[0.89, 0.92]
isMember 0.77*** [0.77, 0.88] 1.04 [1.02, 1.05]
github tenure 0.99*** [0.99, 0.99] 1.01*** [1.01, 1.01]
project tenure 1.01 [0.99, 1.01] 1.01***[ 1.01, 1.01]
toxicity/month 1.02*** [1.02, 1.02] 1.46*** [1.36, 1.52]

PRF-H

isWoman 0.90*** [0.86, 0.87] 0.86*** [ 0.85, 0.87]
isNewComer 0.69*** [0.68, 0.69] 0.74*** [0.74, 0.75]
isMember 0.64***[0.64, 0.64] 0.84*** [0.84, 0.84]
github tenure 0.99*** [0.99, 0.99] 1.01 [1.01, 1.01]
project tenure 1.01*** [1.01, 1.01] 1.01*** [1.01, 1.01]
toxicity/month 1.01*** [1.01, 1.01] 1.26*** [1.25, 1.26]

*** , **, and * represent statistical significance at p < 0.001, p < 0.01, and p < 0.05
respectively.
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likelihood of being an author significantly decreases with GitHub tenure. The likelihood

of authoring toxic comments significantly increased with project tenure among PRF-L and

PRF-H groups. Our results support Miller et al.’s observation that there are many repeat

offenders [112] since the likelihood of authoring toxic comments significantly increases

with the prior frequency of such occurrences.

Characteristics of targets of toxic comments: Contrary to our expectations, formed

based on results [77, 141, 164], we did not find any significantly higher odds of women

or newcomers being targets of toxicity on GitHub. We noticed the opposite among PRF-H

and PRF-L. Similarly, newcomers have significantly lower odds of becoming targets among

PRF-H and PRF-M. Being a project member significantly increases the odds of being a target

among PRF-L and PRF-M but reduces among PRF-H. Project tenure increases the odds of

being a target for PRF-M and PRF-H but reduces among PRF-L. The age of a GitHub account

is positively associated with being a target only for PRF-M. Finally, these results suggest a

‘quid pro quo,’ i.e., prior frequent authoring of toxic comments significantly increases the

odds of becoming a target.

Key finding 4: Women and newcomers are less likely to be either authors or targets

of toxic comments in GitHub PR comments. FOSS developers who have authored toxic

comments frequently in the past are significantly more likely to repeat and significantly

more likely to become toxicity targets.

5.4 Discussion

The following subsections compare and contrast our findings against prior works and

suggest recommendations.
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5.4.1 Comparison with prior SE studies

We investigated 26 different attributes. Only a few of those were also subject to prior

SE studies. Similar to Miller et al. [112], profanity is the prevalent toxicity in our ran-

domly sampled dataset. They reported a high share (25%) of entitled issue comments,

which are demands to project maintainers as if they had a contractual relationship or

obligation [112]. However, we found only 3.2% such cases in our sample. Support-

ing their findings, our results indicate repeat offenders, toxicity increasing with project

popularity, long-term project contributors being authors of toxicity, and gaming projects

harboring more toxic cases [112]. They also reported toxic comments from new GitHub

accounts [112]. Aligning with this finding, we noticed the likelihood of authoring toxic

comments decreased with GitHub tenure. However, contrary to their findings, we notice

a lower likelihood of project newcomers authoring toxic comments. Our results also con-

cur with Raman et al.’s [141] since we also found a lower likelihood of toxicity among

corporate-sponsored projects. During their manual investigation of the Linux kernel, Fer-

reira et al. found uncivil comments during reviews of rejected codes [63]. Aligning with

their findings, we noticed lower odds of toxicity among accepted PRs. Ferreira et al. also

reported incivility among project maintainers’ feedback [63]. However, contrasting their

findings, we noticed a lower likelihood of toxicity from project members. Egelman et al.

reported a higher likelihood of pushback on large code changes [57]. Our result aligns

with this finding, as we found that the odds of toxicity increase with code churn. Rahman

et al. reported incivility due to poor quality code changes [140]. While we did not measure

code quality directly, we may use the number of review comments as an indication of code
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quality since each review comment indicates an issue identified by a reviewer. Aligning

with their findings, our results indicate higher odds of toxicity with the number of review

comments.

5.4.2 Recommendations

While we cannot claim causal relationships for the associations identified in this study

due to our study design, some of the following recommendations apply only if such rela-

tionships exist.

I. Project Maintainers: Our results suggest that delays in fixing bugs or answering user

queries may create unhappy users and toxic comments targeted toward maintainers. As a

project’s popularity grows, maintainers should focus on improving bug resolution since our

results also show that a higher bug resolution rate is negatively associated with toxicity.

Even if an issue is delayed, maintainers should respond politely and suggest workarounds,

if possible, to avoid toxic interactions. We also find project tenure positively associated

with toxicity. Therefore, building a positive culture needs to start with project maintainers

since they are likelier to be project members with the longest tenures [183]. Supporting

prior studies [112, 16, 125, 17], we also found a proliferation of toxicity among gaming

projects. Therefore, we recommend that maintainers of gaming projects adopt a Code of

Conduct and its enforcement mechanism to build a diverse community.

II. Developers: We recommend developers avoid creating pull request contexts that are

positively associated with toxicity. For example, our results indicate that delayed pull

requests are associated with toxicity. Therefore, reviewers should provide on-time reviews

to avoid frustrating authors. Similarly, large code changes are not only bug-prone [24] and
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difficult to review [175] but also likely to encounter toxicity. Therefore, when possible,

creating pull requests with smaller changes is recommended. Pull requests with a large

number of issues indicate poor quality codes and are more likely to receive harsh critiques.

Therefore, developers should not create pull requests with changes that do not yet meet the

quality standards for a project. A higher number of review iterations also frustrates authors

and may cause toxicity. Hence, if possible, reviewers should request all required changes

within a single cycle to avoid back and forth. Complex changes are hard to review and are

more likely to receive toxicity. Hence, authors should annotate such changes and include

helpful descriptions to avoid confusion [56] as well as toxicity. Even when frustrated or

angry, developers should not use toxic languages since developers who use such languages

are more likely to become victims. Finally, while contrary to prior evidence, we find that

women and newcomers are less likely to be targets of toxicity, we still recommend long-

term contributors avoid such language if such persons are present in a discussion since

toxicity not only dissuades newcomers from becoming a part of the communities [164]

but also disproportionately hurts minorities [77].

III. Prospective joiners: If a newcomer wants to avoid negative experiences associated

with toxic cultures, we recommend they start with a corporate-sponsored FOSS project that

matches their expertise and interests. We also recommend such contributors to avoiding

gaming or old stale projects.

IV. Researchers: We found variations among terminologies used for almost identical con-

cepts among SE studies investing in anti-social behaviors. We also noticed conflicting

opinions about whether a particular category should be considered anti-social. Since ex-
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isting schemes are primarily based on the decisions of the respective researchers, they may

not reflect the broader FOSS community. Therefore, existing identification tools based

on these schemes may not align with FOSS developers’ needs and would fail to achieve

broader adoption. Moreover, recent research suggests whether a text should be consid-

ered toxic depends on various demographic characteristics [73]. Hence, understanding

the opinions of the broader FOSS community and how their demographics influence per-

spectives of toxicity is essential to developing a custom mitigation strategy. We consider

that as a pressing research need in this direction.

5.5 Threats to Validity

The threats to validity have been described below.

5.5.1 Internal Validity

Our selection of 2,828 GitHub projects based on our sampling method threatens in-

ternal validity. GitHub hosts over 284 million projects, and mining all of them is infeasi-

ble. We defined six filtering criteria to reduce this sample space to 89k without excluding

projects with significant communication and collaboration. A lower threshold for the num-

ber of contributors or stars would increase the number of projects in this sample and may

potentially change our results. We applied a stratified sampling strategy to categorize the

projects according to PR activity to encounter this threat. Therefore, threats due to thresh-

old selection are more likely to influence only the PRF(L) group since most of the projects

with a lower number of contributors or stars would fall under this group. However, there

is no evidence that changing these thresholds would significantly alter the results, even

for the PRF(L). Our selection of the list of attributes represents another threat to internal
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validity. Prior studies have found various factors such as politics or ideology triggering

toxicity [112]. However, we could not investigate those factors due to the unavailabil-

ity of automated mechanisms to identify such scenarios at a large scale. This study only

investigates automatically measurable factors that may be associated with toxicity.

5.5.2 Construct Validity

Our (first) threat in this category is due to using ToxiCR [155] to identify toxic com-

ments automatically. Our validation of ToxiCR found 88.88% precision, which is within

the sampling error margin reported by ToxiCR’s authors. ToxiCR has false positives in ap-

proximately one out of 10 cases. Similarly, ToxiCR has a false negative rate of between

10-14%. Hence, these false positives and negatives may have influenced our results if

ToxiCR is biased for/against any particular attributes (e.g., review interval or woman) in-

cluded in our study. However, we do not have any evidence of such biases. (Second),

our manual labeling scheme to identify the nature of toxicities to answer RQ1 is a threat.

Although multiple SE studies have studied antisocial behaviors, no agreed-upon scheme

exists. Moreover, researchers from NLP and SE domains have used different terminologies

to characterize similarly subjective concepts. To mitigate this threat, we have analyzed ex-

isting studies [155, 112, 63, 57, 62] and aggregated their categories to build our scheme.

We acknowledge the subjectivity bias, where another set of researchers disagree with our

scheme and definitions. (Third), our manual labeling process may have subjectivity biases.

We prepared a scheme with category definitions and examples to mitigate this threat. The

labelers had a discussion session before starting to build an agreed-upon understanding.

We also measured inter-rater reliability to assess your labeling process. (Finally), auto-

mated gender resolution is another threat. We followed a procedure as the ones in mul-
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tiple recent empirical studies [171, 147, 26]. We used multiple gender resolution tools,

considered users’ location and profile photos, and searched LinkedIn to improve resolution

accuracy. This resolution process may be subject to misclassification. We did not attempt

to identify non-binary genders since we are unaware of any automated resolution of those

without users’ inputs.

5.5.3 External Validity

The nature of toxicities in a FOSS project may depend on factors such as project do-

main, governance, the number of contributors, and project age. We used a stratified ran-

dom sampling strategy to select 2,828 projects representing diverse demographics, includ-

ing the top FOSS projects on GitHub, such as Kubernetes, Odoo, PyTorch, Rust, Ansible,

pandas, rails, Django, numpy, angular, flutter, CPython, and node.js. Yet, our sample and

its results may not adequately represent the entire FOSS spectrum.

5.5.4 Conclusion Validity

We used recommended practices and well-known libraries such as rms, stats, and nnet

to build our regression models. We assess the reliability of our models using goodness-

of-fit metrics and log-likelihood tests. Hence, we do not anticipate any threats from the

results obtained from our models. Although our models account for various confounding

variables, these models identified associations between dependents and predictors, and no

causal relationships can be implied.

5.6 Conclusion

We conducted a large-scale mixed-method empirical study of 2,828 GitHub-based FOSS

projects to understand the nature of toxicities on GitHub and how various measurable
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characteristics of a project, a pull request’s context, and participants associate with their

prevalence. We found profanity as the dominant form of toxicity on GitHub, followed by

trolling, and insults. While a project’s popularity is positively associated with the preva-

lence of toxicity, its issue resolution rate has the opposite association. Corporate-sponsored

projects are less toxic, but gaming projects are seven times more likely than non-gaming

ones to have a high volume of toxicities. FOSS developers who have authored toxic com-

ments in the past are significantly more likely to repeat them and become toxicity targets.

Based on the results of this study, and our experience conducting it, we provide recom-

mendations to FOSS contributors and researchers.
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CHAPTER 6 OVERALL CONCLUSION AND FUTURE DIRECTION

This doctoral dissertation focused on providing a way for the FOSS community to make

healthy communication by identification and mitigation of toxicity during their interactions.

To achieve this broader goal, we have conducted three studies. In our first study, we devel-

oped a state-of-the-art binary toxicity detector and built an explainable toxicity detector in

the second. In our final study, we have done a large-scale empirical analysis to understand

the measurable outcomes of toxicity in GitHub projects.

6.1 Key Outcomes

We have provided the details of the key outcomes of our three studies in the following

subsections:

6.1.1 A customized toxicity detector for SE domain

Perceiving the toxicity in the SE domain is different from real-life communication medi-

ums. For that reason, we first developed a detailed rubric for better understanding toxicity

in the SE domain, and it may help future researchers to label the toxic text from the SE

perspective. We constructed a dataset of 19,651 code review comments and made them

publicly available for further use. Using that dataset, we have developed a state-of-the-art

toxicity detector ToxiCR for SE domain toxicity detection. After an empirical investiga-

tion with different vectorizers, models, and preprocessing, the best combination of ToxiCR

achieved an accuracy of 95.8% and an F-score of 88.9%. This tool is user-friendly and has

been getting public attention in recent days.
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6.1.2 An explainable toxicity detector for Code Review comments

Though a binary toxicity classifier may help the FOSS community remove a particular

paragraph for being toxic, it may not help them understand why a person perceives the text

as toxic. On this goal, we have developed the first explainable toxicity detector ToxiSpanSE

for the SE domain in our second study. To achieve this goal, we manually labeled 3,757 CR

comments with span-level toxicity. Using five different transformer models, we evaluated

the performance of ToxiSpanSE with a total of 19,651 CR comments dataset. The best

combination achieved 88% F-score in our dataset. This tool can be used for finer-grained

toxicity analysis in the SE domain.

6.1.3 A large-scale empirical investigation of toxicity on GitHub Pull Requests (PR)

In our third study, we conducted a large-scale empirical study on toxicity for GitHub

Pull Request (PR) comments. We set four research questions to understand the nature of

toxicity, association of toxicity and project characteristics, context, and participants. Dur-

ing the qualitative analysis of RQ1 (i.e., nature of toxicity), we found that profanity, insult,

trolling, self-deprecation, and frustration are the most common toxic categories in GitHub.

The RQ2, RQ3, and RQ4 findings are based on quantitative analysis. Regression models

suggested that corporate projects are likely less toxic, while gaming projects are the oppo-

site. We also found that poor code review has a positive correlation with toxicity. Though

experienced developers are positively correlated with toxicity, women and newcomers are

the opposite.

This dissertation developed two customized SE-specific tools to automatically identify

toxicity in the FOSS domain. Moreover, it provided key insights into how toxicity is asso-
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ciated with measurable outcomes on FOSS projects. Finally, it provided some actionable

recommendations for project maintainers to combat toxicity in the FOSS community.

6.2 Directions for Future Work

This dissertation provided actionable insights and improvement opportunities to mit-

igate toxicity in the FOSS community. Some of the potential future directions of this

dissertation are discussed in the following:

6.2.1 Notion of Toxicity according to diverse demographic factors

Unlike other text classification problems (i.g., spam, online abuse), toxicity is a highly

subjective [99]. For example, females got more negative comments in the FOSS commu-

nity than men during code reviews [126]. Moreover, newcomers may get more demoti-

vated than experienced ones due to getting toxic comments from their peers. In the first

study of this dissertation, we introduced a rubric of toxicity for the SE domain [153].

However, toxicity may differ based on many factors, such as culture, ethnicity, country of

origin, language, and relationship between the participants. To understand how people

from different demographics perceive toxicity online, Kumar et al. surveyed 17,280 par-

ticipants across the United States [99]. Surprisingly, they found diverse labeling from the

raters, and no single demographic factor could define the construction of toxicity. How-

ever, there are two limitations of that study: i) they conducted their survey only inside the

United States, which does not cover the whole region of the world, and ii) they provided

survey questions that were not related to the SE conversations. No such study has yet been

done in the SE domain to understand toxicity across demographic factors and experience.

A further study may help the developers i) determine whether the toxicity phenomenon
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differs in different demographics and ii) develop finer-grained tools to detect toxicity.

6.2.2 Detoxification among the developer’s textual communication

Our developed tools, ToxiCR and ToxiSpanSE, help the FOSS community identify toxic

comments from the SE domain. One potential future direction would be detoxifying toxic

text from the FOSS community. Large Language Models can be used to detoxify text in

the SE domain. The detoxification model may help the project members use detoxified

comments during their conversations.

6.2.3 Promoting politeness among developers’ interaction

Fostering a politeness culture is essential to enhancing the FOSS community’s healthy

environment. A promising direction for future efforts may involve conducting human-

centric studies to devise strategies to cultivate politeness among developers. The outcome

of this study would promote diversity, equity, and inclusion among FOSS developers and

make a healthy SE community.
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CHAPTER 7 APPENDIX

Up to this point, I have authored the following academic publications:

7.1 Journal Articles

• Published

1. Jaydeb Sarker, Asif Kamal Turzo, Ming Dong, and Amiangshu Bosu. Auto-

mated Identification of Toxic Code Reviews Using ToxiCR. ACM Transactions on

Software Engineering and Methodology (TOSEM), 32(5), July 2023.

• In Review

1. Sayma Sultana, Jaydeb Sarker, Farjzana Israt, Paul Rajshakhar, and Amiang-

shu Bosu. Automated Identification of Sexual Orientation and Gender Identity

Discriminatory Texts from Issue Comments. In Review at the ACM Transactions

on Software Engineering and Methodology, Submission Date: 14 November,

2023 [170].

7.2 Refereed Conference Papers

• Published

1. Jaydeb Sarker, Sayma Sultana, Steven R Wilson, and Amiangshu Bosu. Tox-

iSpanSE: An Explainable Toxicity Detection in Code Review Comments. In the

2023 ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement (ESEM), pages 1–12. IEEE, 2023.
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2. Asif Kamal Turzo, Fahim Faysal, Ovi Poddar, Jaydeb Sarker, Anindya Iqbal,

and Amiangshu Bosu. Towards Automated Classification of Code Review Feed-

back to Support Analytics. In the 2023 ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM), pages 1–12. IEEE,

2023 [178].

3. Jaydeb Sarker, Asif Kamal Turzo, and Amiangshu Bosu.A Benchmark Study

of the Contemporary Toxicity Detectors on Software Engineering Interactions.

In 2020 27th Asia Pacific Software Engineering Conference (APSEC), pages

218–227. IEEE, 2020.

• In Review

1. Jaydeb Sarker, Asif Kamal Turzo, and Amiangshu Bosu. The Landscape of

Toxicity: An Empirical Investigation of Antisocial Behaviors on GitHub. TBD

2024.

7.3 Short Papers

• Published

1. Jaydeb Sarker. ‘Who built this crap?’ Developing a Software Engineering Do-

main Specific Toxicity Detector. Student Research Competition on the Interna-

tional Conference on Automated Software Engineering (ASE), Rochester, MI,

USA, pages 1–3, 2022.

2. Jaydeb Sarker. Identification and Mitigation of Toxic Communications Among

Open Source Software Developers. Doctoral Symposium on the International
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Conference on Automated Software Engineering (ASE), Rochester, MI, USA,

pages 1–5, 2022 [149].

3. Sayma Sultana, Jaydeb Sarker, and Amiangshu Bosu. A Rubric to Identify

Misogynistic and Sexist Texts from Software Developer Communications. In

Proceedings of the 15th ACM/IEEE International Symposium on Empirical Soft-

ware Engineering and Measure- ment (ESEM), pages 1–6, 2021.
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Toxicity occurs during the developers’ interaction in Free and Open Source Software

(FOSS) projects. Prior studies in the Software Engineering domain reported toxic and un-

healthy conversations during the developer’s communication. These unhealthy behaviors

may reduce the professional harmony and productivity of FOSS projects. For example,

toxic code review comments may raise pushback from an author to complete suggested

changes. Toxic communication with another person may hamper future communication

and collaboration. Research also suggests that toxicity disproportionately impacts new-

comers, women, and other participants from marginalized groups in open source com-

munities. Therefore, toxicity is a barrier to promoting diversity, equity, and inclusion in

the FOSS community. Since toxic communications are not uncommon among FOSS com-

munities and such communications may have serious repercussions, the primary objective

of this dissertation is to automatically identify and mitigate toxicity during developers’ tex-

tual interactions. On this goal, this dissertation completed three studies, which include

i) building an automated toxicity detector for the Software Engineering (SE) domain, ii)
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developing an explainable toxicity detection tool for SE conversations, iii) an empirical

investigation of the impacts of toxicity on the outcomes of FOSS projects.
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