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Abstract

Background: Toxic language in Open Source Software (OSS) code
reviews can harm contributor well-being and retention. Detecting
toxicity is especially challenging for context-dependent language,
such as self-deprecation, expressions that may include strong terms
(e.g., “damn, I need to look more carefully at these”), but are self-
directed and non-abusive against other contributors. Aims: We
investigate how to distinguish self-deprecation from interpersonal
toxicity in OSS code reviews. Method: We present a study on the
Zephyr Real-Time Operating System (RTOS) project, examining
how self-deprecation appears in code review comments and how
software engineering specific toxicity models handle it. Using a
toxicity detection tool across pull request review comments, we
retrieved the messages classified as toxic. We then combined a
Large Language Model-based, context-aware judgment with tar-
geted human validation to identify and categorize self-deprecating
comments and qualitative analysis to find different types of self-
deprecating comments. Results: Our analysis of over 272k com-
ments revealed 2,097 toxic comments, and from those, we classified
the self-deprecating toxicity comments into apologies, self blame,
self derogation and self expletives. Conclusions: We identify self-
deprecation as a distinct, common pattern that merits differenti-
ated treatment from interpersonal toxicity. The proposed four-type
taxonomy can guide configurable moderation settings and more
nuanced classifiers that reflect project norms.
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1 Introduction

Although effective collaboration is crucial for the success of OSS
projects [26, 27], toxic language in code reviews, defined broadly as
“rude, disrespectful or unreasonable language that is likely to make
someone leave a discussion,” can undermine contributors’ well-
being, minimal collaboration, and negatively impact contributor
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retention [2, 15, 23]. This is a significant concern as contributor dis-
engagement can increase the risk of projects becoming abandoned
or undermaintained, potentially degrading software quality [1, 25].

In the Software Engineering (SE) context, automated sentiment
analysis and toxicity detection tools are explored to help maintain
healthy interactions by identifying problematic communication [16,
20, 23]. However, applying general-purpose tools to specialized
domains like SE often yields poor results [9]. These tools frequently
misinterpret a few technical comments (e.g., "kill the process") [21]
or lack the context to understand SE-specific communication norms,
leading to inaccurate classifications [18]. To address the challenge
of detecting toxicity in SE contexts, Sarker et al. [23] developed
ToxiCR, a model trained on 19,651 code review texts, achieving an
F1 score of 89%. However, a recent study reported misclassification
issues with less common subcategories of toxicity [19] without
containing explicit profanity.

A significant challenge for automated sentiment and toxicity de-
tecting tools in the SE domain [16, 21, 23] is the prevalence of false
positives (FPs) comments that are incorrectly flagged as toxic. A
high FP rate is detrimental as it undermines developers’ trust in the
tool and can also censor critical technical discourse. One challeng-
ing source of false positives in software engineering communication
is self-deprecation comments where developers criticize themselves
or their own work using negative or apologetic language (e.g., I
missed that first copy, damn it. My bad, sorry for all the noise”).
Automated tools struggle to consistently capture this, often flag-
ging non-toxic self-deprecation simply due to negative keywords.
Prior work by Miller et al. characterized self-deprecating remarks
as unprofessional practices in OSS communities, often categorizing
them as toxic behavior [15]. In contrast, Sarker et al. provided a
more nuanced interpretation in their rubric [23], suggesting that
self-deprecating comments should only be labeled as toxic when
they contain profane language; otherwise, they should be treated
as non-toxic. Despite these differing perspectives, the broader im-
plications of self-deprecation on developers’ interactions within
OSS communities remain unexplored.

Whether self-deprecating comments actually function as toxic
communication within specific communities like the highly techni-
cal Zephyr project requires contextual understanding. Misclassify-
ing these common expressions can inaccurately portray community
health and hinder effective moderation. This paper analyzes the na-
ture of self-deprecating comments within the Zephyr OSS project,
a large-scale RTOS.

Research Question (RQ). How does self-deprecating language man-
ifest in OSS code review discussions?

To address our RQ, we mined 272,935 pull-request comments

from the Zephyr OSS project and applied ToxICR [23], classifying
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2,097 comments as toxic. We then used ChatGPT-5 to identify the
self-deprecating subset,and had two raters independently annotat-
ing these and using Cohen’s kappa for measuring agreement, with
a third annotator to solve conflicts. Finally, we used qualitative anal-
ysis to identify four types of self-deprecating comments: apologies,
self blame, self derogation, and self expletive.

These findings have implications for research and practice. By
constructing a taxonomy of self-deprecating comments, our study
opens new opportunities for fine-grained sentiment modeling in
software engineering. Rather than enforcing a single notion of
toxicity, we envision configurable toxicity analysis frameworks
where maintainers and researchers can select which categories of
unprofessional or negative communication they wish to monitor,
as interpersonal toxicity with comments directed toward others
that may discourage participation or escalate conflicts (e.g., insults,
dismissive tone), and self-deprecation or negative self-referential
expressions that may signal burnout, low confidence, or coping
through humor. Future work may capture additional forms of un-
professional communication, such as sarcasm, passive aggression,
or implicit bias.

2 Related Work

Toxicity is a persistent concern in OSS communities and has re-
cently drawn significant attention from researchers. Prior stud-
ies have examined toxicity and related antisocial behaviors under
various lenses, such as toxicity [15, 21], incivility [5], destructive
criticism [7], and pushback [4], all of which can negatively affect
community health. These behaviors have been shown to contribute
to developer burnout [20], create barriers for newcomers onboard-
ing [20], threaten inclusion and diversity [2], and ultimately con-
tribute to an unhealthy community environment. To better un-
derstand the nature of toxicity in OSS, Miller et al. conducted a
qualitative study of 100 issue comments and identified five sub-
categories of toxic behavior: insulting, arrogant, entitled, trolling,
and unprofessional (which includes self-deprecating remarks) [15].
Similarly, Sarker et al. [23] expanded on this work by identifying 11
subcategories of toxicity through a large-scale empirical analysis,
where self-deprecation also emerged as a distinct form of toxic
communication [22]. While prior research has primarily focused on
broad qualitative categorizations of toxic behaviors [15, 21], limited
attention has been paid to the nuanced role of self-deprecating
comments in which developers criticize themselves, often humor-
ously or apologetically. In this study, we focus on self-deprecating
expressions in OSS communication, examining different types of
self-deprecation in the Zephyr community.

3 Method

Figure 1 presents an overview of the research design.

3.1 The Unit of Analysis

The unit of analysis for this study is Zephyr project!, a large OSS
RTOS hosted on GitHub and maintained under the Linux Founda-
tion. With sustained activity, Zephyr has over than 2k contributors

1Zephyr RTOS documentation: https://docs.zephyrproject.org; GitHub repository:
https://github.com/zephyrproject-rtos/zephyr.
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Figure 1: Research design

who generate more than 1,7k commits monthly, yielding abundant,
current code-review discourse for analysis.

3.2 Data Collection and Dataset Overview

We used the GitHub REST API to collect data from all pull requests
(PRs) in the public Zephyr repository created between July 2017
and February 2025. The raw data, including comment text and
associated metadata (like author, timestamp, etc), was mined and
stored in a CSV file for subsequent processing. The dataset consists
of 672,344 code review comments from 23,273 pull requests.

3.3 Data Preprocessing and Analysis

We cleaned the dataset by removing 399,409 blank or null comments
and normalizing whitespace, resulting in 272,935 valid code review
comments used for analysis. In the following sections, we discuss
the analyses of our dataset.

3.3.1 Toxicity Filtering. To apply our initial filtering for detect-
ing toxic comments, we chose ToxiCR, a state-of-the-art toxicity
detector for the SE domain [23]. Although ToxiCR demonstrates
strong performance (88.9% F1-score, 95.8% accuracy), prior research
showed its effectiveness declined with nuanced or sarcastic expres-
sions [19]. To develop an enhanced version of ToxiCR, we retrained
the ToxiCR model on a combined dataset comprising its own [23]
(19,651 samples) and Rahman et al. [19] (4,410 samples), thereby
improving its robustness in detecting toxicity. ToxiCR generates
a toxicity probability for each sample, ranging from 0 to 1, where
>= 0.5 indicates a toxic class. Further, we applied the enhanced
retrained version of ToxiCR to our selected 272,935 PR comments.

3.3.2  Isolating Self-Deprecating Toxic Comments. We have prompted
the Large Language Model (ChatGPT-5) to detect self-deprecating

humor among the 2,097 comments labeled toxic by ToxiCR. The

model classified 60 PR comments as self-deprecating. To follow a

rigorous validation process, two labelers independently labeled

the comments by using the existing rubric of self-deprecating

comments [22] and detected a few comments that are not self-
deprecating. The prompt and dataset are available in our replication

package [10].

3.3.3 Categorizing Self-Deprecating Toxic Comments. In this step,
we inductively applied open coding [13, 14] on all the comments
classified as self-deprecating to organize the different types of com-
ments that fit in this type of toxicity. Two authors, experienced
in qualitative analysis and OSS toxicity, discussed the codes until
reaching consensus, using a negotiated agreement process [6].
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4 Results

We now address the research question introduced in Section 1.
To answer our RQ, we applied a multi-stage analysis process, as
explained in Section 1.

4.1 Running the ToxiCR sentiment analysis tool

After running the ToxiCR tool on the 272,935 PR comments, the
original ToxiCR model flagged 1,163 comments or 0.43% of the
corpus. The retrained ToxiCR model flagged 2,097 comments or
0.77% of the corpus, as presented in Table 1. This represents an
80.3% relative increase in flagged comments by the retrained model.

Table 1: Toxicity classification of comments (N=272,935)

Count % of corpus

Original ToxiCR 1,163 0.43%
Retrained ToxiCR 2,097 0.77%

4.2 Isolating Self-Deprecating Toxic Comments

Two raters manually annotated the 60 self-deprecating comments
to evaluate if they were really self-deprecating toxicity, another
type of toxicity, or non-toxic (a false positive). The labeling process
achieved 97% agreement with 0.65 Cohen’s Kappa score [12]. After
a discussion session, an extra labeler resolved the conflict, and we
found a total of 57 self-deprecating comments.

4.3 Categorizing Self-Deprecating Toxic
Comments

Table 2 presents the codebook for self-deprecating derived from
open coding: SELF BLAME, SELF DEROGATION, SELF EXPLETIVE, and
APOLOGIES, as we explain below.

Apologies capture comments where contributors use explic-
itly conciliatory language (e.g., "sorry”) to acknowledge a lapse in
attention, oversight, or delay while repairing social rapport and
maintaining positive interpersonal tone (e.g., "Sorry, my editor did
this mess." "Sorry, I hadn’t seen your new commits. All good to
me!"). These comments focus on maintaining relationships and
politeness rather than assessing one’s competence or culpability.

While apologies may co-occur with recognition of a mistake,
they differ from Self-Blame, when the author explicitly attributes
fault to themselves for a specific error in their own code or process,
typically marked by first-person ownership and responsibility [24].
Self Blame emphasizes personal responsibility or inadequacy (e.g., “I
messed this up”). In contrast, apology statements foreground social
harmony and responsiveness rather than internal self-assessment or
negative self-evaluation, functioning to smooth interactions rather
than express fault.

Self Derogation happens when the author negatively evalu-
ates their own competence or character, often with some humor
without directing hostility at others [11] (e.g.,"Shame on me"). We
observed that contributors often use self derogation to soften mis-
takes or tensions, signaling a negative self-evaluation rather than
responsibility-taking or relational repair.

We observed Self Expletive comments in brief expressions using
euphemistic taboo terms [8] to convey frustration, surprise, self-
directed emotion, or informal tone. Unlike self blame, which fore-
grounds responsibility; apology, which relates to social repair, and

NLBSE 26, April 12-18, 2026, Rio de Janeiro, Brazil

self derogation, which negatively evaluates the self, Self-Expletive
represents affective intensifiers and utterances as emotion markers.
Those are expletive interjections usually starting a sentence and
followed by some intent to act ("the hell ... I forgot to save, maybe?")
or to restore harmony (e.g., "damn, I missed that").

Table 2: Codebook for self-deprecating comments

Theme Keywords Representative example(s)

APOLOGIES sorry, apology, my "Sorry, my editor do this mess."
bad "Sorry, I hadn’t seen your new

commits. All good to me!"

"Hrm. Not sure how I messed this
up, sorry for the noise."

SELF BLAME I messed, missed,
mistake, screwed, I
was wrong, I wasted,
I forgot, I
misunderstood, I
misread

SELF DEROGATION I’m an idiot, shame

on me, noob

"Sorry for this huge bunch of
styling issues. I should have
checked this before submitting.
Shame on me :-)"

SELF EXPLETIVE damn, suck, hell, "Oops my bad your patch looks

oops, yikes good."
"the hell ... I forgot to save
maybe?"

~

Our analysis reveals that self-deprecating comments emerge as
a distinct pattern in code reviews, spanning four forms: apolo-
gies that repair rapport, self-blame acknowledging errors, self-
derogation signaling negative self-evaluation, and self-expletives
marking momentary frustration. These expressions are typically
self-directed rather than hostile, indicating different intent and
social function from interpersonal toxicity. Recognizing them as
a separate category enables more nuanced, configurable moder-
ation aligned with project norms.

\ J

5 Discussion

In this section, we present a more in-depth discussion of our results
in the context of the literature.

Is self-deprecation toxic? Or just unprofessional? Our find-
ings reinforce prior evidence that automated toxicity detectors tend
to over-flag developer communication when linguistic cues are
ambiguous or context-dependent [9, 21]. As shown in our results,
several types of self-directed negative language were classified as
toxic. Although using jargon and sounding unprofessional com-
ments, they may reflect the culture of the community, and the norms
may consider those comments as non-toxic. Similar to Qiu et al’s
work [18] on conflict detection in code review, which emphasized
the need for context-sensitive moderation rather than blunt filter-
ing mechanisms, our analysis suggests that fixed toxicity thresholds
risk obscuring legitimate technical self-deprecating comments.

Toward Fine-Grained, Multi-Label Toxicity Classification.
Our results align with prior studies showing that simple toxic
vs. non-toxic classifiers often overlook important distinctions in
developer communication [15], causing benign negative expres-
sions—such as self-deprecating frustration-to be misclassified as
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toxic. In sentiment analysis for SE, the field has already moved be-
yond binary polarity toward fine-grained, multi-label emotion clas-
sification, capturing categories such as joy, anger, and love [3, 17]. A
similar shift in toxicity modeling would allow systems to differenti-
ate between qualitatively distinct forms of negativity. For instance,
future models could distinguish interpersonal hostility from sar-
casm, or from the nuanced of self-deprecating comments identified
in this study. Rather than collapsing all affectively charged com-
ments into a single “toxic” class, multi-label toxicity frameworks
provide more accurate, context-aware moderation.

6 Limitations and Threats to Validity

There are some limitations related to our research results.

External Validity. Our findings are based on self-deprecating
comments from a single OSS project, which constrains generaliz-
ability. Future work should apply and refine our codebook across
diverse OSS communities.

Conclusion validity. While the results suggest that self-directed
negative expressions may function differently from interpersonal
toxicity. Future work should triangulate this finding with inter-
views with project leaders to understand whether self-deprecation
is perceived as harmful, benign, or socially normative.

Construct Validity. Our identification of self-deprecating com-
ments was based on a single LLM (ChatGPT-5), which introduces
model-specific bias and possible misalignment between the model’s
notion of “self-deprecation” and community interpretations of toxi-
city. Future work should triangulate multiple LLMs and non-LLM
baselines, compare agreement across models, and run sensitivity
analyses over prompts and hyperparameters (e.g., temperature, sam-
pling, system instructions) to optimize accuracy and consistency.

7 Conclusion

This study examined self-deprecating language in the Zephyr OSS
project. By identifying four distinct forms of self-deprecating com-
ments: apologies, self-blame, self-derogation, and self-expletives,
we surface nuances that current toxicity analysis models do not yet
encode. Rather than treating these comments as uniformly harmful,
our results highlight an opportunity to enrich toxicity frameworks
with labels that better distinguish interpersonal hostility from self-
deprecating comments, which may not always be considered toxic.
Future work will validate these categories with project leaders
and extend the analysis to other OSS communities to inform more
context-aware moderation and toxicity-analysis pipelines.
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