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Abstract—Background: The existence of toxic conversations in
open-source platforms can degrade relationships among software
developers and may negatively impact software product quality.
To help mitigate this, some initial work has been done to detect
toxic comments in the Software Engineering (SE) domain.

Aims: Since automatically classifying an entire text as toxic
or non-toxic does not help human moderators to understand
the specific reason(s) for toxicity, we worked to develop an
explainable toxicity detector for the SE domain.

Method: Our explainable toxicity detector can detect specific
spans of toxic content from SE texts, which can help human
moderators by automatically highlighting those spans. This toxic
span detection model, ToxiSpanSE, is trained with the 19,651 code
review (CR) comments with labeled toxic spans. Our annotators
labeled the toxic spans within 3,757 toxic CR samples. We
explored several types of models, including one lexicon-based
approach and five different transformer-based encoders.

Results: After an extensive evaluation of all models, we found
that our fine-tuned RoBERTa model achieved the best score with
0.88 F1, 0.87 precision, and 0.93 recall for toxic class tokens,
providing an explainable toxicity classifier for the SE domain.

Conclusion: Since ToxiSpanSE is the first tool to detect toxic
spans in the SE domain, this tool will pave a path to combat
toxicity in the SE community.

Index Terms—toxicity, span detection, software engineering,
natural language processing, explainability

I. INTRODUCTION

Toxicity, which is a large umbrella term comprising various
antisocial behaviors such as offensive language, cyberbullying,
hate speech, and sexually explicit content [1], is pervasive
among various online platforms [2], [3]. As most of the
Free and Open Source Software (FOSS) communities operate
online, they are not immune from such toxic interactions [2],
[4], [5]. As software development requires close collaboration
and rapport among participants, toxicity can have severe
repercussions for a FOSS community, which include decreased
productivity, wastage of valuable time [4], negative feelings
among the participants [6], barriers to newcomers’ onboard-
ing [7], [8], hostile environments towards minorities [9]. As
proactive identification and mitigation of toxic interactions
among FOSS developers are crucial, automated approaches
can help FOSS moderators.

Prior studies [5], [10] found that off-the-shelf toxicity
detectors do not perform well in the SE texts because some

words (‘die’, ‘kill’, ‘dead’) in the SE context have a different
meaning. Due to the unreliability of off-the-shelf natural lan-
guage processing (NLP) tools on Software Engineering (SE)
datasets [10], [11], recent works have proposed customized
toxicity detectors trained on SE communications [4], [5].
While these tools boost reliable performances on SE datasets,
we have identified a shortcoming of these two solutions. First,
existing tools classify an entire paragraph on a binary scale,
including hundreds of sentences. Even if only one of those
sentences is toxic, it classifies the whole paragraph as toxic.
A binary, paragraph-level classification of toxic texts may
help the FOSS community to decide to remove a particular
paragraph or establish a code of conduct for toxic comments.
However, it becomes time-consuming for a moderator to iden-
tify the offending excerpt(s) from a large paragraph. Second,
due to the lack of cultural differences, a moderator may fail
to identify the offending sentences from a paragraph classified
as toxic by these tools. Being motivated by recent advances in
explainable machine learning (ML) models, this study aims
to create a new SE domain-specific toxicity detector that
overcomes this particular shortcoming. We aim to develop
an explainable toxicity detector for the Software Engineering
domain, which can precisely identify toxic excerpts from a text
to assist FOSS moderators. ‘Explainable’ in the context of
this study indicates the ability of the classifier to pinpoint the
words/phrases responsible for a text’s toxic classification [12].

Our solution aims to pave a path for automated text
moderation to foster healthy and inclusive communication by
reducing manual efforts to locate the toxic contents in FOSS
developers’ communication and helping project maintainers
quickly identify the negative parts of the comment to decide
whether the text should be approved or rejected. Moreover,
this technique will also enable finer-grained toxicity analyses
from the patterns of toxic excerpts to determine possible
remedies. Finally, our work can be a building block to develop
solutions to proactively prevent toxic communications, similar
to grammatical mistakes/typos detection tools.

A toxic span is defined as the fragment of a sentence
or text that potentially causes the meaning of the text to
be toxic [13]. A toxic span may contain a single word or
a sequence of words. For example, “Yuck, this code is a
crap” where the toxic spans are highlighted with red color.
The SemEval-2021’s Task 5 organizers provided 10K toxic
posts from the Civil Comments dataset [14] with labeled978-1-6654-5223-6/23/$31.00 ©2023 IEEE
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span character offsets. An ensemble solution using BERT [15]
achieved the best performance among the teams participating
in this challenge. As prior research shows the necessity of SE
domain-specific customization for NLP tools [10], [11], these
toxic span detectors may not perform well on SE texts. Hence,
we aim to build a customized solution.

On this goal, we select SE domain-specific toxicity dataset
from Sarker et al. [5], which consists of a total of 19,651 Code
Review (CR) comments with 3,757 (∼ 19%) toxic samples.
We manually label this dataset using two independent raters
to develop ground-truth annotations for the toxic spans within
the toxic samples. We measured inter-annotator agreement
using Krippendorff’s α [16], which was 0.81 (almost perfect
agreement). We first developed a lexicon-based classifier using
this dataset to establish a baseline model. We trained and
evaluated five sequence-to-sequence transformer models. Dur-
ing our 10-fold cross-validation-based evaluations, we found
a model based on a fine-tuned RoBERTa [17] achieving the
best an F1−score of 0.88. Primary contributions of this work
include:

• ToxiSpanSE: The first explainable toxicity detector for the
SE domain.

• An expert-annotated, span-level toxicity labels for 3,757
toxic code review comments.

• An overview of metrics to develop explainable NLP tools
for the SE domain.

• An empirical evaluation of five transformer-based models
with 19,651 code review texts.

• We make our model and dataset available for further
analysis and use in the software engineering community.
Available at: https://github.com/WSU-SEAL/ToxiSpanSE

Paper organization: The remainder of this paper is or-
ganized as follows. Section II provides the related works on
toxicity and toxic span detection. We discuss the research
methodology in SectionIII. Section IV presents the results.
Section V discusses the lesson learned. Section VI addresses
the threats to validity of this work. Finally, Section VII
concludes the paper.

II. BACKGROUND

A. Toxicity Phenomena

The term ‘toxicity’ represents the negative or antisocial
interactions in online conversations [18]. A report from [18]
showed that 47% Americans experienced harassment and
abuse during online communication, and toxicity deters users
from online engagement. Toxicity is a subjective phenomenon
often subject to the opinions of beholders [19]. A broader view
of toxicity is that of an umbrella of various antisocial behaviors
such as hate speech, cyberbullying, trolling, and flaming [2].
The Conversational AI team from Google defined toxicity as
“comments that are rude, disrespectful or otherwise likely to
make someone leave a discussion” [20].

Toxicity in the SE domain is not uncommon. Recent studies
from the SE domain analyzed toxicity and other antisocial
behaviors. Sarker et al. defined a code review comment as

toxic if it includes any antisocial behaviors such as offensive
name-calling, insults, threats, personal attacks, flirtations, sex-
ual reference, and profanities [10]. Miller et al. adjusted the
meaning of toxicity from Conversational AI during analyzing
GitHub issue discussions and mentioned that the toxicity
umbrella covers trolling, flaming, hate speech, harassment,
arrogance, entitlement, and cyberbullying [2]. Ferreira et al.
defined the unnecessary disrespectful term toward discus-
sion as incivility during analyzing the Linux Kernel Mailing
list [21]. A similar term of toxicity is ‘destructive criticism’
during code review [9] that represents the negative feedback,
including threats, poor task performance, or flaws of the
individuals. In 2020, Egelman et al. defined ‘pushback’ in
code review as a reviewer blocking a change request due
to unnecessary interpersonal conflict [6]. In this work, we
adapted the definition of toxicity from the study of Sarker et
al. [10] because we used their comment-level toxicity labels,
which were annotated using this definition, and they provided
a rule book for marking a text as toxic or non-toxic which
assisted us with our annotation process.

B. Toxicity in SE

FOSS communities have reported toxic contents in devel-
opers’ communications in blog posts [22], [23], podcasts [24],
and talks [25]. Large open-source foundations face an increase
in toxicity in their groups. For example, the Linux Community
experiences toxicity [23], and the founder apologized for using
toxicity in Linux Kernel Mailing lists [26]. By conducting
a survey, the Perl Foundation found that several members
stepped down due to receiving abusive messages [27].

Researchers from the SE community also conducted em-
pirical studies to understand toxicity in FOSS domain [28],
[29]. Another line of research focused on analyzing the toxic
behavior of open source developers’ interactions such as
GitHub issue discussions [2], [4], code review comments [5],
[9], [10], [30], and Gitter messages [10]. Toxic communication
impacts developers’ mental health like a ‘poison’ [28] and
can cause burnout [4]. To combat toxicity in open source,
Raman et al. developed a toxicity classifier trained with a
small-scale GitHub issue discussion dataset [4]. However,
several studies showed that their tool [4] performed poorly
on the large-scale SE texts [2], [10], [30], [31]. The number
of annotated toxic texts in open-source communication is
relatively small, which makes it challenging to build a reliable
toxicity classifier. However, the existence of toxicity has severe
repercussions among the open-source software developers
such as newcomers onboarding [4], disproportionate impacts
on underrepresented groups [4], [9], [32], and pushbacks [6].
To detect the toxicity from code review comments, Sarker
et al. developed a machine learning-based toxicity classifier
(referred to as ‘ToxiCR’) trained with 19,651 labeled code
review comments from Gerrit projects [5]. In 2022, Qiu et
al. developed a classifier for identifying interpersonal conflicts
during code reviews [30]. Cheriyan et al. developed a classifier
to detect swearing and profanity [33] for four different SE
platforms. Our work differs from the prior works by focusing
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on finer-grained identification of which phrases make a text
toxic in the SE context.

Recent studies also focused on understanding antisocial
behaviors in open-source communities. Miller et al. conducted
a study for a better understanding the toxicity with a quali-
tative analysis of 100 toxic issue comments on GitHub [2].
They manually investigate the nature, context, participants,
and after impacts of toxicity on GitHub. After analyzing the
1,545 emails from Linux Kernel Mailing lists, Ferreira et
al. found that the common forms of incivility are frustra-
tion, name-calling, and impatience [21]. Gunawardena et al.
defined ‘destructive criticism’ as another antisocial behavior,
which includes negative feedback which is nonspecific and
is delivered in a harsh or sarcastic tone. Their survey of
93 developers suggests destructive criticism as a barrier to
promoting diversity and inclusion [9].

C. Toxic Span Detection

Although the detection of toxicity [34]–[36], hate
speech [37]–[39], and offensive language [40], [41] are com-
mon in online platforms, the idea of span detection of toxicity
has only more recently gained attention with the SemEval-
2021 toxic span detection task [42]. Toxic spans represent
a part of the text that is responsible for the toxicity of the
posts [13]. This direction is inspired by prior NLP studies on
aspect-based sentiment analysis [43], [44], which aims to de-
tect the sentiment of a text and find the specific region of a text
that expresses the sentiment using attention-based deep neural
network models [43]. While earlier studies focused on the
attention mechanism championed by Vaswani et al. [45], Sen
et al. found that machine attention does not reliably overlap
with human attention maps [46]. To improve explainability us-
ing attention-based mechanisms, recent works have proposed
transformer-based sequence-to-sequence models [47], [48].

In the SemEval-2021 task, Pavlopoulos et al. provided a
labeled dataset [42] of toxic spans with 10,000 samples [13]
curated from the Civil Comments dataset. The raters marked
the span that corresponds to the toxicity of a text. The task
is a binary classification because it contains toxic and non-
toxic tokens. Moreover, they fixed the ground truth of the
dataset if the majority of the raters labeled the span as toxic.
Ninety-one teams made submissions with different methods
in the SemEval-2021 competition to detect toxic spans [42].
One of the teams proposed a BERT-based ensemble method
toxic span detection approach where they achieved 70.83%
F1 score and secured first place in SemEval-2021 task [49]. A
RoBERTa-based method performed only slightly worse, with
a 70.77% F1 score, and other approaches based on fine-tuning
of pre-trained transformer models ( [50], [51]) also performed
well for that toxic span detection tasks. Since several studies
worked on toxic span detection for online civil comments,
Pavlopoulos et al. annotated a new dataset for toxic to civil
transfer [52]. Although several studies have proposed toxic
span detectors for online comments, no such tool exists for
the SE domain. Since NLP tools may not work reliably on a
cross-domain dataset [11], the development and evaluation of

a SE domain-specific toxic span detector are essential. Such
a tool will not only enable a finer-grained analysis of toxicity
but also enable proactive notification to authors.

III. RESEARCH METHOD

After selecting a dataset from a prior work [5], two of
the authors independently annotated toxic spans in each text.
Using this annotated dataset, we train and evaluate sequence-
to-sequence transformer models that output the probability
of each word belonging to a toxic span in the current text
context. Finally, we use postprocessing steps to identify toxic
spans from the output probabilities based on empirically
determined thresholds. The following subsections detail our
research methodology.

A. Dataset

1) Dataset Selection: The number of datasets for toxicity
detection in Software Engineering communication is small [4],
[10]. We explored previous studies on toxicity and antisocial
behaviors in open-source interactions and found four studies
that provided manually labeled datasets for toxicity [4], [5],
[10] and incivility [21] detection. Raman et al. labeled only
611 texts from GitHub issue discussions as toxic or non-
toxic [4]. In 2020, Sarker et al. provided a dataset of 6,533
CR comments and 4,140 Gitter messages labeled as toxic or
non-toxic [10]. They also provided a rubric to identify a text as
toxic or non-toxic. In a subsequent study of building a toxicity
detection tool, they annotated 19,651 CR comments with
binary, comment-level toxicity scores [5]. Moreover, Ferreira
et al. provided an annotated 1,545 emails from the Linux
Kernel Mailing List where they labeled each message as civil
or uncivil [21]. Given that Sarker et al.’s dataset [5] is the
largest one in the Software Engineering domain for toxicity
detection, we select their dataset for our study. Moreover, their
detailed rubric also guides our annotators on how to label toxic
spans.

2) Dataset Annotation: We got each of our toxic samples
manually annotated by two independent annotators. To di-
versify the annotators, we chose one woman and one man
for the annotation task. As manual labeling toxic text is a
subjective task, we sought to reduce subjectivity bias during
manual annotation by asking our annotators to carefully read
and follow the rubric for toxicity developed by [5]. Although
Sarker et al.’s dataset [5] includes 19,651 CR comments, only
3,757 are labeled as toxic. Therefore, our annotators only
labeled the 3,757 toxic ones, assuming that the non-toxic
samples do not include any toxic spans (empty span offsets).

For annotation, we use the Label Studio platform [53].
Figure 1 shows an example of our annotation interface. We
exported the labeled data from Label Studio, which returns
the code review text and corresponding character span offsets
of the toxicity annotations for each sample. Table I shows two
example annotations. The first example shows a toxic sample
where the word ‘sucked’ makes text toxic, and this span occurs
in character offsets 10-15. The third example is non-toxic and
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Fig. 1. Manual Labeling using Label Studio, toxic span is highlighted

TABLE I
RAW DATASET WITH CHARACTER SPANS. RED MARKED REPRESENTS

SELECTED TOXIC WORDS

Character Span Offsets CR Text
[10, 11, 12, 13, 14, 15] Yeah that sucked, fixed done.
[39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 74, 75, 76, 77]

I think the formatting may have gotten
screwed up (or Gerrit made it look ugly)

[ ] below assignments also should be removed

therefore has no span selected, resulting in an empty list ([])
of character offsets.

3) Inter-annotator Agreement: We wrote a Python script
to compare the spans produced by the two annotators. Un-
surprisingly, we have found conflicts between the labeling
samples. Previous studies have suggested several chance-
corrected agreement measures to compute the inter-annotator
agreement (IAA) [54]. Chance-corrected measures such as
Cohen’s κ [55], Fleiss’ κ [56], and Scott’s π [57] distinguish
the observed disagreements (Do) from expected disagreements
(De). Therefore, these IAA measures are unsuitable for se-
quential tagging with potential partial overlaps [58].

Hence, similar to prior studies developing sequence tagging
datasets [54], [58]–[60], we chose Krippendorff’s α [16] as the
IAA measure. Krippendorff’s α is more robust as it can handle
multiple annotators and missing values and considers partial
agreement/disagreements among the labelers. Krippendorff’s
α allows the distance-based formulation and it is designed
for context-specific tasks. The formula of Krippendorff’s is:
α = 1 − D̂o

D̂e
, for a given distance function of D(a, b)

where D̂o represents the observed average distance and D̂e

is expected average distance [54]. Since Krippendorff’s α
calculates several distance functions such as nominal, interval,
and ordinal [16], we chose the nominal distance function for
our measurement. To calculate Krippendorff’s α score, we
wrote our script using the existing implementation [61].

Our labeled dataset has 3757 toxic code review samples
labeled by two raters for toxic spans. For calculating Krippen-
dorff’s α with nominal distance, created two arrays of labels.
We split each sample (s) to a set of tokens s = t0, t1, ....., tj
where tj is a token inside the sample s. As our primary dataset
contains the character level span offsets, we preprocessed it
for token-level offsets. Table II shows an example of defining
the token array for a sample. There is a total of 15 tokens
after excluding the comma (,) from the input text. Therefore,
we generate an array of 15 elements (same as the length of
tokens) in which each position corresponds to a token from
the CR text. We have a same-length array for Rater1 and

Rater2 where we set 1 if the token is inside the span selection,
otherwise 0. Following this process, we generated 3,757 arrays
for all toxic samples of Rater1 and Rater2. For computing
agreement, we merge all the token-level annotations for each
rater into a single array where each array contains a total
of 84,951 ratings. We calculated Krippendorff’s α using the
nominal distance between these two arrays and found the
α value as 0.81 (almost perfect agreement). This agreement
score is significantly higher than a prior work [58] where the
agreement score α is 0.46.

4) Conflict Resolution and Ground Truth: We found that
two labelers have at least partial disagreement in 928 samples.
Two of our raters (Rater1 and Rater2) discussed resolving
the conflicts and assigned the final labels. Table II shows
an example conflict with token arrays and corresponding
character spans to illustrate our resolution process. At the end
of this step, our final dataset includes CR comments and the
corresponding character spans.

B. Tool Design

We compared two different approaches to design ToxiS-
panSE. First, we used a lexicon-based naive approach, where
words belonging to a predefined list are marked as toxic spans.
Second, we used a supervised learning-based approach with
five different transformer-based encoders. Figure 2 depicts our
model architecture for the transformer-based models with an
example prediction.

ToxiSpanSE takes input texts and associated labeled spans as
input. After preprocessing, inputs are passed to the transformer
models. The output of those models are arrays of floating point
numbers ranging from 0 to 1, which indicate the probability of
each token belonging to a toxic span. The following subsec-
tions detail lexicon-based and transformer-based approaches.

1) Preprocessing: The model takes the CR text and the tar-
get spans (labeled spans) with character offsets as input. Fur-
ther, we split each text into sentences using en core web sm
from the spacy library [62] and keep corresponding character
span offsets for each sentence. We have 39,438 sentences
after splitting 19,651 CR texts; among those, 5,465 sentences
have toxic spans. Therefore, around 13.85% samples in our
dataset have at least one toxic span. We chose sentence-level
evaluation for two reasons: i) a sentence may itself have toxic
spans, ii) prior work also did sentence splitting for toxic
span detection [50]. Further, we apply a tokenizer to convert
each sentence to corresponding tokens. In this study, we use
tokenizers that are appropriate for each model. For the lexicon-
based model, we chose NLTK word tokenize [63] from
Python. On the other hand, we use transformer-based encoder
models’ corresponding tokenizer from huggingface [64]. We
use AutoTokenizer function and select: i) bert-base-uncased,
ii) roberta-base, iii) distilbert-baseuncased, iv) albert-base-
v2, and v) xlnet-base-cased tokenizers for their corresponding
encoder model. Moreover, we set the maximum length to
70 during the tokenization of each sentence, as using a
Python script we empirically found that 98.5% of our sentence
samples have less than 70 tokens. This pruning was essential as
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TABLE II
EXAMPLE OF INTER-RATER AGREEMENT AND CONFLICT RESOLUTION

Rater Text Token Array Character Spans
Rater1 if you think it sucks horribly, that’s fine as long as we can fix it [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0] [16-29]

Rater2 if you think it sucks horribly, that’s fine as long as we can fix it [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] [16-20]
Final Label if you think it sucks horribly, that’s fine as long as we can fix it [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0] [16-29]

Fig. 2. Model Architecture of ToxiSpanSE. Optimal threshold for each model
was empirically selected (detailed in IV-B2), Blue arrow → shows an example

taking a large token length significantly increases both required
memory and training time. Each transformer-based pre-trained
tokenizer splits the sentences into sub-word token strings and
adds an unknown token to its dictionary if it finds them. For
each sentence, each transformer-based tokenizer generates a
special token at the start of the sentence at the end of the
sentence (i.e., the bert-base tokenizer puts the [CLS] token at
first and the [SEP] token at the end of each text). To pass the

tokens of each sentence into the encoder model, we take three
inputs for each sample from the tokenizers that are input ids,
token type ids, and attention mask. We can decode the vector
to the original string using input ids.

2) IO Encoding: Prior NLP works with sequence labeling
datasets followed BIO [50] or IO [65] tagging to encode the
spans. BIO stands for Beginning, Inside, and Outside, where
B-indicates the beginning token of a toxic span, I- indicates
that the token is inside the toxic span, and O indicates a token
outside the toxic span. BIO is suitable for NLP tasks to divide
a span of text into multiple chunks. As we aim to identify
which text spans contain something toxic, a simpler one, i.e.,
the IO -encoding, is sufficient for our goal. Moreover, IO
simplifies our processing steps. In our IO encoding, every I
tag corresponds to a token inside a toxic span, and O indicates
outside.

To get the target span, we use their offset mapping to
determine whether that token is inside the selected toxic span.
Offset mapping provides each token’s starting and ending
character. Next, we generate a sequence of 0s (non-toxic
token) and 1s (toxic token) for each sentence. Hence, our
ground truth target is a sequence of 1’s and 0’s of maximum
length (70). We consider the first and last token value as
0 for each sample because each tokenizer of pre-trained
transformers generates a special token at the start and another
at the end. Finally, for each sentence, we have a vector (length
= 70) containing a sequence of 0s and 1s, which is the ground
truth target vector.

3) Lexicon Based Model: We also designed a naive model
referred to as the ‘lexicon-based’ model for detecting toxic
spans from our dataset. In general, toxic spans contain many
common words, including profanity, sexually explicit, and
swear words. The purpose of developing this model is to evalu-
ate whether a simple lexicon search-based approach compares
against state-of-the-art transformer-based models. Our lexicon-
based model matches each token in a text against a list of
common toxic tokens with our ground truth tokens. We curated
a list of toxic tokens (ΣTOK = tok0, tok1, ...., toki) from two
prior studies, which include 85 profane words from Sarker et
al. [5] and the top 100 toxic tokens from Kurita et al. [66].
In total, our lexicon list contains 167 tokens since there are
overlapping tokens between those two lists.

Ground Truth For Lexicon Based Classification: To tokenize
each sentence, we use NLTK word tokenize from Python.
Further, we use textspan library [67] to get the exact location
of selected tokens from the human labeling spans. We use a
similar IO encoding approach for this model (70-length vector
for each input) where if that is inside the labeled span, we put
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the token position as 1, otherwise 0.
Lexicon Based Classifier Output: We generate an output

vector(vec) for each input sentence with a length of 70. We
set the veci = 1 if that token of the input matches with one
of the tokens from the TOK, and veci = 0, otherwise.

4) Transformer based model: The Transformer deep learn-
ing architecture that emerged in 2017 [45] is based on multi-
head self-attention and has shown to perform significantly
better than Recurrent Neural Network (RNN)-based mod-
els for sequence-to-sequence tasks. Transformers use a self-
attention mechanism for computing the internal representation
of input and outputs. Moreover, the transformer-based model
does not require any pre-computed context-free embedding
vectors. Instead, it can generate context-based embeddings by
pre-training the entire model as an encoder for sequence-to-
sequence tasks.

From the preprocessing steps, we have inputs (input ids,
token type ids, attention mask) for each sentence and we
have generated ground truth (target labels) using IO encoding.
Inputs and targeted IO encoding are passed to the encoder
layer to generate context-based embeddings. Since there are
several Transformer based encoders available for sequence
classification tasks, we consider the following transformers
which performed well in a prior token-level classification
task [42]. In this work, we used Transformer based encoders
from the HuggingFace library [64], selecting the following
pre-trained encoders:

• BERT: Devlin et al. proposed the pretraining of the Deep
Bidirectional Transformers for Language Understanding
(BERT) model in 2018 that was trained with masked
language modeling (MLM) and next sentence prediction
(NSP) [15]. We use the BERT-base model, which has 12
transformer layers with 768 hidden states and 12 attention
heads with 110 M parameters. BERT can be fine-tuned
with domain-specific datasets for sentence and sequence
classification tasks.

• DistilBERT: Sanh et al. proposed a lighter and faster ver-
sion of the bert-base model, using modeling distillation,
referred to as “DistilBERT” [68]. It has around 66 M
parameters (40%

• RoBERTa: An optimized version of BERT is RoBERTa,
which achieved better performance than BERT-base in
some NLP tasks by pretraining the model for a longer
time and on more data than the original BERT [17]. The
base model has the same architecture as the BERT-base
model.

• ALBERT: ALBERT has a similar architecture to the
BERT-base but has only 128 hidden embedding layers
that reduced the total parameters to 12 M [69]. We chose
to use the ALBERT-base model for this study.

• XLNet: Unlike the autoencoder (AE) language models
(i.e., BERT), Yang et al. proposed XLNet, which is
based on autoregressive language modeling [70]. XLNet
sought to overcome the limitations of the BERT model by
maximizing the expected likelihood over all permutations
of the factorization order. Moreover, its performance does

not rely on data corruption. We use xlnet-base-cased
model from the transformer library, which has a similar
size as BERT-base model.

In this experiment, we select those pre-trained encoders
from the HuggingFace library [64]. After the embeddings with
size (1 X 70), we set a Dense layer to set the required final
output size. Moreover, since we are doing a binary sequence
classification task, the ‘sigmoid’ activation function is added
to this Dense layer to generate the final output’s probability.
Therefore, our final output vector is a sequence of floating
point values (from 0 to 1 due to the sigmoid function) with a
length of 70.

5) Post Processing: After fine-tuning the model (details in
next section), we predict the probability score with the test
samples. The model provides a probability score from 0 to
1 for each token (70 per sample (s)). Using an empirically
determined threshold (Section IV-B2) parameter, we decide
whether a token is in the toxic class (1) or non-toxic (0).
Further, from the prediction vector, we generate a set (Preds)
of indexes for the output tokens in the toxic class. Our
ground truth has already been preprocessed as toxic and non-
toxic tokens. We also generate a set of the indexes of toxic
tokens from the ground truth (Gs) of the test set. Finally, we
wrote a Python script to decode each token from the sample
and show the output like figure 2. We have input “fucking
c programmers, done”, and the model provides the output
”<toxic>fucking </toxic>c programmers, done”. To make
the tool user-friendly, we use a tag (<toxic>) at the start and
(</toxic>) at the end for predicted tokens inside toxic spans.

IV. EVALUATION

A. Evaluation Metrics

Since our task is based on a sequence tagging approach for
toxic spans, we adjusted our evaluation metric from Martino et
al. [71] that is based on Potthast et al.’s plagiarism detection
work [72]. Recently, Pavlopoulos et al. also used the same
metric for toxic span detection in online discussions [52].
We decided to use this metric because it provides partial
credit for matching the toxic spans inside a sequence. Un-
like prior studies [52], [71], [72], we have chosen token-
level comparison instead of character level for measuring the
precision, recall, and F1 score. The token-level comparison
is taken because token-to-token comparison provides more
explainability (comparing the ground truth toxic word to
predicted toxic word) than the character label comparison. For
example, a token(s) can represent the toxicity of the whole
text, whether a character inside a token does not represent
that meaning.

Let a code review sample(s) represent a sequence of tokens
tok0, ....tokj ⊆ s . After IO encoding, the ground truth vector
is a sequence of 1’s and 0’s with 70 values. We calculate
the ground truth token offset as Gs = postokm , ...., postokn .
So, for each sample(s), Gs contains the position of all toxic
tokens (postokm

). When no toxic token exists in the sample,
the Gs = empty. Similarly, a predictor model predicts the
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tokens with a floating value. Further, we use a threshold (our
experimental evaluation to identify optimal thresholds for each
setup is detailed in Section IV-B2) to decide whether that
token is toxic (1) or non-toxic (0). We generate the predicted
token offsets Preds for each sample from that vector. For
better understanding, we put five examples in table III with
ground truth (GT) and predicted (Pred) token offsets. Since
we processed our text into tokens in preprocessing steps, the
first token offset (tok0) is for the special token (such as [CLS]
for bert tokenizer). Therefore, our first token (i.e., ‘it’) position
count starts from 1.

In the first example of table III, we observe that [7, 8, 9]
token offsets are marked as toxic, whereas [7,8,11] offsets are
predicted. So, there are two exact matches (7, 8), one position
is not predicted (9), and one position is falsely predicted (10)
as toxic. Hence, we used precision (P), recall (R), and F1 for
each sample s are calculated as follows:

P s(Preds, Gs) =
|Preds ∩Gs|

|Preds|
(1)

Rs(Preds, Gs) =
|Preds ∩Gs|

|Gs|
(2)

F1s(Preds, Gs) =
2 ∗ P s(Preds, Gs) ∗Rs(Preds, Gs)

P s(Preds, Gs) +Rs(Preds, Gs)
(3)

In the equation 1, we define the precision P s for each
sample. We define the numerator as the length of the inter-
section of the set of predicted offsets (Preds) and ground
truth token offsets (Gs). The denominator is the length of
predicted offsets (Preds). Similarly, we calculate the recall
(Rs) by using equation 2. Finally, we combined equation 1
and 2 to calculate the F1 in equation 3.

However, these equations can fail due to 0 in denominators.
For example, if a model predicts none of the tokens from
a sentence belonging to toxic spans, precision is undefined
for that sentence. Similarly, for a correctly marked non-toxic
instance, recall is undefined. We used the same approach as
both Pavlopoulos et al. [52] and the SemEval-2021 Task 5 [13]
to measure a variation of precision, recall, and F-score for span
detection tasks. In this variation, if the number of predicted
toxic tokens is 0 (i.e., |Preds| = 0), we check the number
of toxic tokens in the ground truth set (|Gs|). If both sets are
empty, the prediction is correct, and we assign this prediction
a precision = 1; otherwise, we assign precision = 0. On the
other hand, if the ground truth set is empty (i.e., |Gs| = 0),
we assign recall = 1 only if the predicted set is also empty
(i.e., |Preds| = 0), and recall = 0 otherwise. We would also
like to mention that these custom precision/recall measures do
not follow traditional precision/recall curve characteristics due
to this variation.

We compute and report mean precision, recall, and F-
score for the toxic and non-toxic instances separately since
our dataset is highly imbalanced. In our results, P0, and
P1 denote precision for the non-toxic and toxic instances,

respectively. We consider F11 as our main measure for the
experiments because it shows the measurement of the model
for the minority (toxic) class tokens.

To clarify the metric measurement, we show the calculation
from the examples of Table III. Here, for the first sample,
the numerator for equation 1 and 2 is 2 (i.e., two offsets are
intersected). The denominator for equation 1 and 2 is 3. So,
precision for toxic class (P1) is: 2

3 = 0.67, recall for toxic
class (R1) is: 2

3 = 0.67. We calculated the F1 as 0.67. While
considering the second sample, the length of ground truth
offset |Gi = 0|, but its’ predicted offset length |Predi = 1|.
Since its ground truth is empty, its’ metric aligns with the non-
toxic class. Hence, equation 2 (recall) would be 0

0 that would
be undefined. For that reason, we put P0 = 0 and R0 = 0
in the second case. Similarly, the third example belongs to
the toxic class metric where the length of |Predi = 0|. In
this case, the equation 1 (precision value) will be 0

0 . For that
reason, we set P1 = 0 and R1 = 0 in this case. For the
fourth example, both ground truth and prediction are empty.
In those cases, we consider both P0 = 1 and R0 = 1 because
we provide full credit for this. The last example shows the
measurement where precision and recall are not the same.

B. Experimental Setup

We have done an extensive analysis of each model in our
experiment. For accurate estimation of the model performance,
we have done 10-fold cross-validation. Using Python’s ran-
dom.seed(), we create stratified 10-folds, which keep a similar
ratio between toxic and non-toxic classes for all splits. Further,
in each fold, we keep 80% for the train set, 10% for the
validation set, and the rest 10% for the test set. We used an
NVIDIA Titan RTX GPU with 24 GB memory in Ubuntu
20.04 LTS workstation to conduct the evaluation.

1) Hyperparameters: We set the following hyperparameters
during the training of our model:

• Loss Function: We chose a variant of a binary cross-
entropy loss function for our task. Since we have mul-
tiple tokens (length = 70) with a range of fractional
values from 0 to 1, we have added a too-small value
(epsilon from Keras) with each prediction. This procedure
will help our model to be more stable and prevent the
prediction from 0 that can cause (log 0 = undefined)
problems. Moreover, we added a clipping between 1 and
0 inside the binary cross-entropy loss to avoid exploding
gradients.

• Optimizer and Learning Rate: We use Adam optimizer
with a learning rate 1e− 5.

• Number of Epochs: We set the number of epochs as 30
in each fold.

• Early Stopping Monitor: To prevent the model from
overfitting during the training, we set the EarlyStopping
function from the Keras library [73] where with the
monitor with ‘val loss’. During training for each epoch,
the model is trained with the training dataset and tested
with the validation dataset. While the validation loss does
not decrease for four consecutive epochs, the model stops
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TABLE III
EXAMPLE OF MODEL PREDICTIONS. RED REPRESENTS THE TOXIC TOKENS

Ground Truth Text Predicted Text GT Offset Pred Offset P R
it is not clear in code what the hell rest means it is not clear in code what the hell rest means [7,8,9] [7,8,11] 0.67 0.67
This will become a trash quick with such a
generic name.

This will become a trash quick with such a
generic name.

[] [5] 0 0

Your indentation is messed up again Your indentation is messed up again [4,5] [] 0 0
I do the same as you’re suggesting in other code I do the same as you’re suggesting in other code [] [] 1 1
Oh, shit, you’re right Oh, shit, you’re right [1,2,3] [3] 1 0.33

Fig. 3. Threshold variation for RoBERTa model (Using Validation Set)

training and saves the best model. We also empirically
monitored that the optimal ‘val loss’ provided the best
F11 score for the validation set.

2) Threshold Selection: Since the models from each fold
generate a sequence of 70 length vectors, with a floating value
for each token, we need to set a threshold to convert to binary
(0 or 1) values. In text classification tasks, a threshold of 0.5
is a common choice [5], [52]. To identify optimum thresholds,
we evaluated our validation set by varying the threshold from
0.01 to 0.99 with a 0.01 increment. We aim to find the
threshold resulting in the best F11 score for the validation
set. We empirically evaluated each model with this threshold
variation for the validation set in 10-fold. With the mean from
10-folds, we found the optimal threshold value for each model
to maximize F11 score. For example, the RoBERTa model
achieved the best F11 of 0.89 with a threshold of 0.12 with
validation data set. Figure 3 shows performance (precision,
recall, and F1) variations for the RoBERTa model against
threshold variations using the validation set. We also noticed
that the F1− score for the toxic class remains the same from
threshold 0.08 to 0.18 for the RoBERTa model. As we take a
variation of precision and recall measurement, the plot does
not behave like the general characteristics of precision and
recall. Figure 3 also depicts that by increasing the threshold
value, both precision and recall decreased. After calculating
the optimal threshold from each model using the validation
set, we use that optimal threshold for the corresponding model
to predict the test set. During the test set prediction, we
also did similar 10-fold cross-validation and got the mean of

each metric. Finally, we report the results of each model’s
performance with the optimal threshold in Table IV.

C. Results with optimal threshold

We present the results with the optimal threshold for each
model in table IV. In the first row, we put the lexicon-based
models’ performance. Many of the spans in our ground truth
contain some specific toxic words. Therefore, the lexicon-
based model performed quite well in our study that achieved
0.69 F11 score. This lexicon-based matching approach also
performed better than other transformer models (except the
BERT-base model) for non-toxic classes. However, there is a
generalizability issue with using the matching approach for
detecting toxic spans.

Since our dataset is highly imbalanced, having a large
number of empty spans, all of the five transformer models
achieved similar scores for P0, R0, and F10 in the range
of 0.90 ∼ 0.95. For toxic tokens, RoBERTa outperformed
the other four models and achieved 0.87 precision, 0.93
recall, and 0.88 F11 score. BERT-base model achieved the
second best performance with F1 = 0.86. DistilBERT and
ALBERT models achieved similar performance with 0.85 F11
score. However, DistilBERT has fewer parameters than other
transformer models in our study, and this model is faster during
fine-tuning than others. On the other hand, XLNet lacks the
performance for both toxic and non-toxic classes than other
transformer-based models.

Finding 1: While all five transformer-based models
achieved better performance than the lexicon-based ap-
proach for toxic class, the RoBERTa model outperformed
other models with 0.88 F11 score.

D. Error Analysis from the best model

To provide more clarity on our model performance, we
have manually analyzed the misclassification with our best-
performing model. For that reason, we ran our best-performing
RoBERTa model with a threshold of 0.12 to print misclassifi-
cation instances. In our final preprocessed dataset, we have
a total of 39,438 sentences. During misclassified instance
printing, we have done 10 folds. For that reason, we can cover
all the samples from our dataset. We have found a total of
3406 (∼ 8.63%) sentences where misclassification occurred.
However, we categorized the errors into three different types
because we are doing a sequence classification problem. Ta-
ble V depicts some examples of errors from our model where
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TABLE IV
EXPERIMENTAL RESULTS WITH THE OPTIMAL THRESHOLD. THE RUNTIME OF EACH MODEL AND PERFORMANCES DURING EACH FOLD IS INCLUDED IN

THE REPLICATION PACKAGE [74]

Models Optimal Threshold
Non-toxic words Toxic words

P0 R0 F10 P1 R1 F11
Lexicon-based NA 0.95 0.95 0.95 0.75 0.67 0.69
BERT-base 0.15 0.95 0.95 0.95 0.87 0.89 0.86
RoBERTa 0.12 0.92 0.92 0.92 0.87 0.93 0.88
DistilBERT 0.17 0.94 0.94 0.94 0.85 0.89 0.85
ALBERT 0.11 0.92 0.92 0.92 0.85 0.89 0.85
XLNet 0.10 0.90 0.90 0.90 0.79 0.88 0.81

the first column shows the error types, the second column is
for ground truth (GT) token span offsets, and the third column
is for predicted token span offsets.

1) Partial Disagreement: Since we are giving partial credit
for the sequence classification metric, we decide to formulate a
new error category as Partial Disagreement (PD). We consider
an error as PD where the ground truth span offset has some
values and the predicted span has some value with some
disagreements. We found a total of 945 sentences (2.4% of the
total sample and 27.75% of the error sample) in this category.
The first three examples of Table V represent the PD category.
In the first example, we can see that our rater labeled the ‘what
the hell’ phrase inside the toxic span whereas the model predict
‘the hell’ as toxic.

2) False Positives: We consider False Positives (FP) when
a sentence has no spans in its ground truth label but some of its
portion is predicted as toxic. In our evaluation, a total of 2226
FPs (5.64% of total samples, and 65.35% of the error sample)
occurred. We can see three examples of FPs in Table V. In
those examples, the tokens (FC, stupid, and WTF) do not
represent toxic meanings for those texts. In the third example
of FP, the ‘WTF’ represents a library of Linux, not a ‘what
the fuck’ phrase. Similarly, the ‘stupid’ word has been used
by the reviewer to him/herself. For that reason, that sentence
does not have any toxic meaning.

3) False Negatives: We consider the occurrence of False
Negatives (FN) where the sentence has single/multiple toxic
span offsets but the model predicts no span. The high number
of FNs would cause a serious problem for the user of this
model because it will miss many toxic instances. Our model
has a low amount of FNs where it can not predict toxic span
for 235 sentences (< 1% of our total samples, and 6.90% of
the error sample). The last two examples on the table V are
FNs that contain some rare toxic phrases (i.e., ‘Evil’, ‘brain
is deficient’). For that reason, our classifier could not predict
them as toxic.

Finding 2: False Positives instances dominated the list of
misclassifications. Our models’ reliable performances can
be attributed to lower instances of ‘Partial Disagreements’
and ‘False Negatives’.

V. DISCUSSION

Lesson #1: Toxic span selection is a highly subjective
task for annotators: After the initial labeling of the toxic
spans, we found that two of our raters showed at least partial
disagreement for 928 samples. Human raters do not agree
with all samples in selecting the toxic spans. In Some cases,
both annotators select the profane words, but one may miss
the associated words. For example,“doesn’t this just mean we
fucked up the mips syscall.S in bionic?” text where first labeler
marked “fucked up” as toxic span and second annotators
marked only “fucked” as toxic span. In some of the other
cases, self-directed anger words such as ‘argh’ or ‘damn’ were
mislabeled. Therefore, for similar labeling tasks, we would
recommend spending time building a rubric and agreed-upon
understandings among the annotators to achieve high IAA.
Lesson #2: Lexicon-based approach performs well but does
not provide generalizability: We found that our lexicon-
based matching approach achieved 0.69 F11 score. Moreover,
it performed better for non-toxic classes than the transformer-
based supervised training approaches because the lexicon-
based approach has less probability of flagging a non-toxic
token as toxic (less FPs). Though it performed well in our
dataset, using this model for a new software engineering
dataset may cause serious threats. This approach is just token-
matching and will miss the associated toxic tokens. Moreover,
some tokens do not always represent toxicity. For example,
in I will kill you, where kill is toxic. But in Make sure you
kill the process first, here kill is not toxic. For that reason, the
lexicon-based approach may generate a large number of FPs.
Lesson #3: Transformer-based models are reliable and
explainable for the FOSS community: In our extensive
evaluation, we found that the RoBERTa model outperformed
others by achieving 0.88 F11 score while the other three
transformer models also performed well for the toxic class.
Since the sequence tagging approach is a challenging task for a
new domain, our model can be used by the project maintainers
to flag the toxic portion of a text. Moreover, since our
best model has fewer false negative cases, FOSS maintainers
can use this tool to detect the actual toxic segment from a
toxic comment. Apart from that, we have used friendly post-
processing, which provides an output with tagging: “you’re
not talking about neutron, (<toxic>) shut up (</ toxic>)”.
Lesson #4: Proactive toxic prevention tool development:
Since ToxiSpanSE is highly precise in identifying toxic ex-

Authorized licensed use limited to: Wayne State University. Downloaded on January 19,2024 at 22:03:04 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V
EXAMPLE OF SOME ERRORS

Error
Types

GT Span Predicted
Span

Actual Text Predicted Text

PD [14,15,16] [15,16] rest seems like too generic name and it’s not clear in
code what the hell rest means.

rest seems like too generic name and it’s not clear in
code what the hell rest means.

PD [1] [1,2] Damn grammar :-P Damn grammar :-P
PD [1,2] [1,2,3,4,5] O crap, hate me: do we still need this one?. PD O crap, hate me: do we still need this one?.
FP [] [1] FC related code should be removed. FC related code should be removed.
FP [] [1] stupid design on my part. stupid design on my part.
FP [] [7] As far as I understood, WTF::HashMap does’nt sup-

port it.
As far as I understood, WTF::HashMap does’nt sup-
port it.

FN [1] [] Evil spaces must die. Evil spaces must die.
FN [2,3,4] [] Your brain is deficient, please fix, also done. Your brain is deficient, please fix, also done.

cerpts, it is possible to leverage this model to proactively
discourage toxic texts. For example, a Gerrit code review plug-
in can be developed that highlights toxic excerpts similar to
grammatical mistakes or typos, while a review is being written.
Such highlights will make an author aware of potential toxic
interpretations and may initiate a self-reflection.

Although the project maintainers would decide on content
moderation, they can use our work to develop a tool to
rephrase the toxic content to civil comments. Prior work
introduced this concept for online communication text [52].
The research community from the SE domain and FOSS main-
tainers may think of this step to reduce the toxic comments
from developers’ communication.

VI. THREATS TO VALIDITY

A. Internal Validity: Our selection of code review dataset
from a prior work [5] remains a threat to validity. Biases in
the curation of this dataset propagate to our study as well.
However, Sarker et al. [5]’s dataset remains the largest labeled
toxicity dataset for the SE domain, and it was curated using
stratified sampling criteria to span various toxic instances.
Since this selected dataset contains only code review com-
ments, it may not adequately represent various other categories
of developer communications such as issue discussions or
technical question answering. However, that threat may be
minimal as we focus on toxic phrases separate from a text’s
technical contents.
B. Construct Validity: Annotator bias during manual labeling
is a potential threat to validity. To mitigate this threat, we
reused an already established rubric [5], used a gender-diverse
group of annotators including one woman and one man and
arranged a discussion with the annotators to build a shared
understanding of the rubric before starting the annotation
process. Moreover, we followed recommended practices of in-
dependent labeling and conflict resolution through discussions.
A high value of Krippendorff’s α (i.e., – 0.81, ‘almost perfect
agreement’) indicates the reliability of our labeling process.

We followed the definition and rubric of toxicity established
by Sarker et al. [5]. While Sarker et al’s conceptualization of
toxicity is similar to the ones proposed by Raman et al. [4]
and Miller et al. [2], there are subtle differences between their
rubrics and ours. Therefore, models trained using our dataset
may have degraded performance on datasets released by other

studies. Similarly, our models may encounter degraded per-
formance on SE datasets of other anti-social communication,
such as incivility [21] and destructive criticism [9]. However,
this limitation does not apply to our tool pipeline, and it can
be retrained to fit other conceptualizations.
C. External Validity: Our dataset includes code review com-
ments from four FOSS projects using Gerrit. While we do
not have any evidence suggesting the code review interactions
on Gerrit are different from other review platforms, such as
GitHub pull requests, Phabricator, CodeFlow, and Critique.
Our dataset may not adequately represent communication
on those platforms. Similarly, as ToxiSpanSE is trained on
code review comments, it may have degraded performance
on other SE datasets, such as issue discussion, app reviews,
and technical question answering. However, this limit does
not apply to our approach, and using a dataset curated from
other sources, ToxiSpanSE can be retrained to develop context-
specific detectors.
D. Conclusion Validity: Using the position-based metric threat-
ens conclusion validity. To mitigate this threat, we adopted
our metrics from prior studies with span detection [52], [71].
Moreover, since most of our labeled instances are non-toxic,
we separately report the performance measures (i.e., P , R, and
F1) for both toxic and non-toxic classes.

VII. CONCLUSION AND FUTURE WORK

In this work, we introduced ToxiSpanSE, a SE domain-
specific explainable toxicity detector that, in addition to iden-
tifying toxic texts, precisely marks the phrases responsible for
this prediction. We trained and evaluated ToxiSpanSE using
19,651 Code review comments that were manually annotated
to mark toxic phrases. We have fine-tuned five different
transformers based on encoders that predict the probability
of a word being toxic in a given context. We also empirically
identified optimum probability thresholds for each of the five
models. Our evaluation found a RoBERTa model achieving
the best performance with 88% F11 score. We have made
our dataset, scripts, and evaluation results publicly available
at https://github.com/WSU-SEAL/ToxiSpanSE. In addition to
facilitating finer-grained toxicity analysis among SE communi-
cation, we hope this tool will motivate explainable models for
other SE domain-specific NLP classifiers, such as sentiment
analysis and opinion mining.
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