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ABSTRACT
Toxic and unhealthy conversations during the developer’s commu-
nication may reduce the professional harmony and productivity
of Free and Open Source Software (FOSS) projects. For example,
toxic code review comments may raise pushback from an author
to complete suggested changes. A toxic communication with an-
other person may hamper future communication and collaboration.
Research also suggests that toxicity disproportionately impacts new-
comers, women, and other participants from marginalized groups.
Therefore, toxicity is a barrier to promote diversity, equity, and
inclusion. Since the occurrence of toxic communications is not un-
common among FOSS communities and such communications may
have serious repercussions, the primary objective of my proposed
dissertation is to automatically identify and mitigate toxicity during
developers’ textual interactions. On this goal, I aim to: i) build an au-
tomated toxicity detector for Software Engineering (SE) domain, ii)
identify the notion of toxicity across demographics, and iii) analyze
the impacts of toxicity on the outcomes of Open Source Software
(OSS) projects.
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1 INTRODUCTION
Prior research found evidence of toxic communications among
various OSS communities [14, 19, 30, 40]. Although toxic commu-
nications are less frequent among OSS communities than in online
platforms such as social media and opinion forums, it may have se-
rious repercussions on the productivity or even survival of an OSS
project. For example, being demotivated and frustrated with toxic
communications, such as insults, threats, and sexual attacks from
their peers, developers may leave an OSS project [3, 8]. Moreover,
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such communications often disproportionately impact newcomers,
women, and other marginalized groups [17, 21, 41]. Therefore, tox-
icity is also a barrier to promote diversity, equity, and inclusion.
Although proactive identification and mitigation of toxic communi-
cations is crucial, it is a challenge for large-scale OSS communities
with thousands of members (e.g., Mozilla, Debian, and OpenStack)
to manually check all communications for toxicity. Therefore, an
automated identification and mitigation mechanism can signifi-
cantly help these communities combating toxicity. In this context,
my proposed dissertation aims to identify and mitigate toxic com-
munications among open source software developers. I aim to achieve
this goal based on three studies.
(Study 1) Develop a customized toxicity detector for the SE
domain

Motivation: Despite the existence of many off-the-shelf toxicity
detectors, those perform poorly in SE texts [37]. However, such
performance degradation is hardly surprising, since prior research
on SE domain-specific sentiment analysis tools [1, 23, 28] estab-
lished needs for SE domain-specific natural language processing
(NLP) tools. Although Raman et al. [35] developed the first SE
domain-specific toxicity detector, it performed poorly on later stud-
ies [27, 34, 37]. To better understand toxicity and its impacts, a
reliable toxicity detector for the SE domain, therefore is a need.
(Study 2) Develop a better understanding of the notion of
toxicity among OSS developers representing various demo-
graphic groups

Motivation: According to Miller et al., toxicity among OSS com-
munitis is a big umbrella of several antisocial behaviors, such as of
trolling, flaming, hate speech, harassment, and cyberbullying [27].
In my prior study, we also introduced a definition of toxicity for the
SE domain [37]. However, the notion of toxicity may differ based on
on multitude of different factors, such as culture, ethnicity, country
of origin, language, and relationship between the participants. A
further study may help the developers: i) whether the phenomenon
of toxicity differs different demographics, ii) to make conversation
with another developer according to demographics. This study will
help to analyze toxicity according to demographics and experience,
and development of context aware toxicity detectors.
(Study 3) Analyze the impacts of toxicity on the outcomes of
OSS projects

Motivation: I will analyze the impact of toxic comments on the
open-source development community. This analysis may help the
project management i) to take the required steps to mitigate the
toxic interactions and ii) to improve the developers’ relations. More-
over, this analysis may help the developers to get an overall idea of
the negative impact of toxicity and inspire them not to use toxic
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conversations with their peers. This study aims to investigate: i)
how toxicity impacts the diversity inclusion in SE practices, ii) how
toxicity makes barriers for newcomers on-boarding, and iii) a bet-
ter understanding of participants’ characteristics and contextual
factors that instigates toxic communications.

The remainder of the paper is organized as the following. Sec-
tion 2 provides a brief overview of the research context and prior
related works. Finally, Section 3 describes the three proposed stud-
ies and Section 4 concludes the paper respectively.

2 BACKGROUND
Toxicity: Due to influxes of toxic communications among various
online platforms [24, 26], researchers have focused on automated
toxicity identification techniques. The Jigsaw Conversational AI
team defined toxicity as rude, disrespectful comments, which make
a person leave the conversation [2]. Other researchers have also
characterized various forms of toxicity, which include hate speech
[9, 39], microaggressions [4], insults [29], and cyberbullying [36,
43]. However, toxic communications among OSS developers differ
from those seen in other online platforms, as OSS communities
are professional workplaces. Yet, most of the OSS communication
channels such a mailing list [15], issue discussions [27, 35], and
code reviews [17, 37] show occurrences of toxicity.

SE domain specific NLP tools: Most of the prior works on
developing SE domain specific natural language tools focused on
automated identification sentiments and opinions [1, 5, 20, 31]. Re-
cently, several works have focused on characterizing SE domain
specific toxicities and their identifications. To better understand
the toxicity in FOSS development, Miller et al. have done a quali-
tative study on 100 GitHub toxic issue discussions [27] and they
found that the most common types of toxicity are insults, entitled,
and arrogant. Their study suggests that toxicity in GitHub differs
from other domains like Wikipedia or Reddit [27]. After analyzing
1,545 Linux Kernel Mailing Lists, [15] found incivility (an antisocial
behavior) where two-thirds of them contained frustration, name-
calling, and impatience. To alleviate toxicity from the SE domain,
Raman et al. [35] developed a toxicity detector for the SE domain
with the combination of Perspective API [2] and Stanford Politeness
detector [7]. Several studies found the significant low performance
of this tool [35] in SE dataset as it was trained with only 654 labeled
Github issue comments [27, 34, 37]. Further, Cheriyan et al. devel-
oped an offensive language detector that considers only swearing
and profanity [6]. To prevent interpersonal conflict in issues and
code reviews, Qiu et al. developed an automatic detection classifier
[34] using ‘toxicity classifier’ [35]) and ‘pushback classifier’ [11].
Although two recent studies have attempted to develop toxicity
detectors, performance of those tools are questionable [37].

Impacts of toxicity: In addition to a reliable toxicity detec-
tor, the developers should have a better understanding about the
impacts of toxicity on their project outcomes. For example, the
negative or controversial comments during code review took more
time to complete the project than the neutral or positive reviews
[12]. Another work found that destructive criticism during code
reviews demotivated the women to continue their work on open-
source projects [17]. After getting toxic comments on Github issue
discussions, project maintainers sometimes took steps (i.e., locking

issues, deleting issues, blocking users) [27] but this work is limited
to only 100 samples.

3 RESEARCH APPROACH
The following subsections provide overviews of the three studies
for my proposed dissertation.

3.1 Study 1: Develop a customized toxicity
detector for the SE domain

Challenges: Since state-of-the-art toxicity detectors (i.g., Perspec-
tive API [2]) and one SE related toxicity detector [35] do not perform
well in the SE text [37], we need to train the model with a large SE
related labeled text. Manual labelling of toxic comments in the SE
domain is a costly and time consuming process because toxic com-
ments are rare [35, 37]. In addition, we need a SE domain specific
rubric to label the text as some of the SE domain texts represent
different meanings than general domain [35]. In my prior bench-
mark study [37], we have found off-the-shelf toxicity classifiers
misclassified some common technical phrases (i.g., execute, kill,
trash, junk, dirty, dead process) as toxic.

Research Methodology: To encounter the challenges of build-
ing the SE-specific toxicity detector, I have developed ToxiCR, a SE
specific supervised-learning based toxicity detector for code review
comments [38]. Before developing the ToxiCR, I have done a bench-
mark study where we empirically defined a rubric to label a text
toxic or non-toxic in the SE domain [37]. During defining the rubric
for detecting toxic interaction in the SE domain, we have selected
Code Review (Android, Chromium OS, and LibreOffice projects)
and Gitter chat messages (Instant Relay Chat) as previous studies
suggested the presence of toxicity [35, 40] in those communities.
Using a Python script with Gerrit’s REST API, we mined all publicly
available code reviews and excluded the bot comments like Paul et
al. [30]. We have used a stratified sampling strategy with Google’s
Perspective API (PPA) [2] to select the probable toxic comments
from code reviews [37]. To define the rubric, we went over 1000 SE
texts and empirically developed a rubric to identify what is toxic or
non-toxic with respect to the SE domain. Finally, we prepared a set
of rules to label a text as toxic or not for our SE dataset. According
to our definition, a text is considered to be toxic in SE domain if
it contains any of the followings: offensive name calling, insults,
curse or swearing, flirtations, sexual references, personal attacks,
threats [37]. Further, I and another author from my prior bench-
mark studymanually labeled 6,533 code review comments and 4,140
Gitter messages using the rubric [37]. We found that off-the-self
toxicity detectors failed to detect toxicity in the SE domain with
a low F1 score and accuracy. The SE domain texts contain techni-
cal words, code snippets, keywords which intensify the classifiers
to misclassify the texts. These results and recent studies [27, 34]
highly motivated us to develop a reliable toxicity detector in the
SE domain.

For developing ToxiCR, we have manually labeled a large scale
dataset which is shown in table 1. In my benchmark study, we
have 6,533 labeled code review texts and additionally two of us
labeled 13,038 code review comments from open stack projects.
The inter-rater agreement (Cohen’s Kappa) score is 0.92. Overall,
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Table 1: An overview of manual labeled dataset

Dataset # total texts # toxic # non-toxic
Code review-I [37] 6,533 1,310 5,223
Code review-II [38] 13,038 2,447 10,591
Code review (combined) 19,571 3,757 15,819

Table 2: Mean performances of the top three models

Model + Preprocessing P1 R1 F11 Acc
GRU + (profane_count, id_split) 0.897 0.856 0.876 0.954
RF + profane_count 0.917 0.845 0.879 0.955
BERT + keyword-removal 0.907 0.874 0.889 0.958

we have used 19,571 labeled code review comments to build our
model where 19.2% samples are toxic (3,757).

We have followed the state-of-the art supervised-learning and
NLP based techniques to build the toxicity detector. ToxiCR is a
combination of machine learning models, preprocessing techniques,
and vectorizers. We empirically evaluated and added ten supervised
learning models with ToxiCR which includes five conventional ma-
chine learning (CLE) algorithms (Decision Tree, Logistic Regression,
Support Vector Machine, Random Forest (RF), Gradient-Boosted
Decision Tree), four deep neural networks (DNN) (Long Short Term
Memory (LSTM) [18] , Bidirectional LSTM [16], Gated Recurrent
Unit [13], Deep Pyramid CNN [22]), and one Transformers (Bidi-
rectional Encoder Representations from Transformers (BERT) [10]).
We have done five mandatory preprocessing of the code review
texts (URL removal, Contraction expansion, Symbol removal, Rep-
etition elimination, Adversarial pattern identification) and three
optional preprocessings (Identifier splitting (id_split), Programming
Keywords Removal, profane-count). For vectorizing the text to fit
into machine learning models, we use five different word vectoriz-
ers. We set and tuned the model parameters according to the binary
classification strategies.

During the training of CLEmodels, we randomly split the dataset
and have done 10-fold cross validation where 9 groups are used
for training and another one is used for testing in each splitting
[38]. DNN and BERT models have a probability to overfit. To find
the best fit model, we split the dataset into train: test: validation as
8:1:1 in each fold of 10-fold cross validation. During each fold of
training with 80% of the data, the trained system are tested with
10% of validation data. This validation set helps each model to find
its best hyperparameters at the end of the training. To do that, we
also use the EarlyStopping function that monitors minimum val
loss from Keras library.

Research Progress: During the evaluation of ToxiCR [38], we
have done 10-fold cross validations 5 times and computed the mean
of all metrics (precision, recall, F1 for both class, and accuracy).
Without applying optional preprocessing, we have found that RF
provides the best F11 score (0.859) among all CLEmodels which was
also higher than DPCNN and LSTM models. GRU with GloVe [32]
embedding provided an F11 score as 0.875 which is also statisti-
cally significant. Overall, the best model is BERT which achieved
F11 score (0.887) and accuracy (0.957). Further, we also investigate

whether three of the optional preprocessings or their combinations
improve the performance of any model. To understand the results
more clear after applying optional preprocessings, I put the results
metrics for toxic class (Precision (P1), Recall (R1), and F11) and
overall accuracy of the top three models on table 2. Moreover, I
have added which types of preprocessing techniques provided the
top performances of those models. We have found that CLE models
boost their performance with optional preprocessings than DNN
and transformers. Finally, we got a combination with BERT and
keyword-removal preprocessing which performed the best with
0.889 F11 score and 0.958 accuracy.

My paper of these findings: ‘benchmark study’ has been accepted
in 27th Asia-Pacific Software Engineering Conference (APSEC) [37]
and ‘ToxiCR’ [38] is currently under review (major revision submit-
ted) to ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM).

Contributions The contributions of this study include: i) a
rubric to identify toxic texts from software developer communi-
cations; ii) a large scale labeled dataset of 19, 571 texts; and iii) a
reliable toxicity detector for SE domain, which is publicly available
at: https://github.com/WSU-SEAL/ToxiCR.

3.2 Study 2: Develop a better understanding of
the notion of toxicity among OSS
developers representing various
demographic groups

ProblemDefinition:Unlike other text classification problems (i.g.,
spam, online abuse), toxicity is a highly subjective [25]. For exam-
ple, in the OSS community females got more negative comments
than men during code reviews [31]. Moreover, newcomers may
get more demotivated than experienced ones due to getting toxic
comments from their peers. To understand how people from differ-
ent demographics perceive toxicity online, Kumar et al. conducted
a survey from 17,280 participants across the United States [25].
Surprisingly, they found a diverse labeling from the raters and no
single demographic factors can define the construction of toxicity.
However, there are two limitations of that study: i) they conducted
their survey only inside the United States which does not cover
the whole region of the world, and ii) they provided the survey
questions that were not related to the SE conversations. In the SE
domain, no such study to understand toxicity across demographic
factors and experience has been done yet. To fill these research
gaps in understanding the toxicity across the demographics in the
SE domain, I set my first research question as:

RQ1: Does the phenomenon of toxicity differ across the demograph-
ics in the OSS community?

According to the previous research [25], state-of-the-art classi-
fiers failed to detect toxicity when the data is labeled according
to demographics and experiences. Hence, I set my next goal as
preventing toxicity from different demographic perspectives and
personal experiences. So, I set my second research question:

RQ2: How can we mitigate toxicity in demographic perspectives?
Challenges: First, it is crucial to find out a diverse developers

community to conduct a survey. Second, we need to compile a set
of questionnaires that can be used to understand the perspectives
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of toxicity across demographics. Finally, to identify toxicity accord-
ing to demographics, developers need a fine-grained generalized
classifier that can not not only detect toxicity but also detect the
sub-versions (i.g., insult, threat) of toxicity. Therefore, to build a
fine-grained toxicity classifier, we need a large-scale labeled dataset
that can provide diverse versions of toxicity.

Research Methodology: To get a better understanding of the
notion of toxicity among OSS developers from different demo-
graphic (i.g., Nationality, Culture, Gender, LGBTQ+, Religion and
Race) groups, I will conceptually replicate the study of Kumar et
al. [25]. Conceptual replication stands for using the different re-
search methodologies with the same set of data/ questions [42]. In
this work, I will not use the exact same data and demographics
from [25], but I will do partial conceptual replication. First, I will
prepare a survey for OSS developers across the whole world to
understand how they perceive the OSS interactions as toxic. The
survey includes 15 comments from the SE interactions (i.e., code
review) to label and the information of demographic characteristics
from the participants. Second, a participant can label each com-
ment from a range of 5 toxic (non, slightly, moderately, very, and
extreme) categories. Finally, participants will label each comment
into subcategories of toxicity (insult, threat, identity attack, sexually
explicit, flirtation, and profanity). During the subcategory labeling,
participants can label each comment into multiple subcategories.

From my first part of this study, I will consider the comments
that will be rated moderately toxic or higher as toxic text. Further, I
will do a statistical analysis to find out how demographics (gender,
age, religion, LGBTQ+, race) and experiences influence to perceive
a text as toxic. Second part of this study will help to answer the
RQ2. I aim to build a fine-grained toxicity detector that will detect
the different sub-versions of toxicity for example insulting, identity
attack, insulting, threat etc. After getting the response from the
developers, I may gather a large datasets from different perspectives
of toxicity that will be labeled by the participants. If I will need
more dataset, I will label it from the perception of the participants
labeling. Finally, I will apply state-of-the art NLP and machine
learning techniques to build a fine grained multi-class tool to detect
toxicity in the SE domain.

Research Progress: I am working on setting the questionnaires
for the survey. After getting permission from the IRB of my univer-
sity, I will send this survey among 6000 developers with different
demographics across the world.

Expected contributions: Expected contributions from this
study include: i) a better understanding how a developers’ de-
mographics influence toxicity; ii) a better understanding of sub-
categories of toxicity; and iii) a fine grained tool to detect different
perspective of toxicity.

3.3 Study 3: Analyze the impacts of toxicity on
the outcomes of OSS projects

Problem Definition and Challenges: To understand the impact
of toxicity in the open-source community, we will need a large scale
study among the popular projects. Recently, Miller et al. found some
after effects of using toxic comments in OSS discussions, for exam-
ple closing, locking issues, deleting or hiding the comments and
blocking users [27] but their study is limited to only 100 Github

issue discussions. [17] found that negative code review demotivates
the female developers and [33] studied that newcomers got frus-
trated due to getting impolite comments in open source projects.
To get a broader idea of the impact of toxicity on the outcomes of
OSS projects, I set my first research question as:

RQ1: How does toxicity impacts measurable outcomes of an OSS
project?

Further, I will analyze what characteristics instigate beyond the
toxic comments in open-source projects. Hence, I set my second
research question as:

RQ2: Which factors commonly work as triggers of toxicity among
OSS communities?

Research Methodology: To do a large-scale empirical study
on understanding the impact of toxicity on the outcomes of OSS
projects, I have curated a large-scale dataset from GhTorrent and
Gerrit code reviews. I have selected ten popular projects (i.g., go,
libreoffice, ovirt) and picked the inline and review comments from
Gerrit code reviews. Moreover, I have selected 1000 popular GhTor-
rent projects for my empirical analysis. Since I aim to analyze only
the details of toxic comments, I have started my work to collect the
details of the projects where toxic comments occurred. To complete
this task, I plan to use the ToxiCR classifier [38] to identify the toxic
comments from the Gerrit and GhTorrent dataset.

For answering the RQ1, we have resolved the gender for all
contributors on those 10 Gerrit projects. Moreover, I will find out
who are new contributors to those projects. Further, I and my col-
league will manually investigate those selected toxic comments
(classified by ToxiCR) and label them into different sub-categories
of anti-social behaviors (i.g., insults, sexual attack, threat). I will
summarize the after impacts of those projects outcomes where tox-
icity occurs. After analyzing the entire conversation where toxicity
occurs, I will apply mixed methods to find out which characteristics
trigger toxicity in open-source projects to answer the RQ2. Finally, I
will propose some necessary steps from the results of mixed method
analysis on how to mitigate the toxic interactions in FOSS projects.

Research Progress: I have generated toxicity scores on ten
projects of gerrit for inline and review comments using ToxiCR
tool.

Expected contributions: Expected contributions include: i) em-
pirical evidence regarding the impact of toxicity on the outcomes
of OSS projects; ii) a better understanding of how toxicity impacts
various demographic groups; and iii) a set of recommendations to
prevent as well as mitigate toxicity from the OSS communities.

4 CONCLUSION
In my doctoral dissertation, I focus on providing a way to the OSS
community to make healthy communication by identification and
mitigation of toxicity during their interactions. To achieve this goal,
I have planned to complete three studies. These three studies will
help the open-source software developers i) to use an automatic
detection of toxicity tool in the SE domain, ii) understand the notion
of toxicity according to demographic factors, and iii) provide a better
understanding of the impact of toxicity in OSS projects.
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