
‘Who built this crap?’ Developing a Software Engineering
Domain Specific Toxicity Detector

Jaydeb Sarker
Wayne State University

Detroit, USA
jaydebsarker@wayne.edu

ABSTRACT
Since toxicity during developers’ interactions in open source soft-
ware (OSS) projects show negative impacts on developers’ relation,
a toxicity detector for the Software Engineering (SE) domain is
needed. However, prior studies found that contemporary toxicity
detection tools performed poorly with the SE texts. To address
this challenge, I have developed ToxiCR, a SE-specific toxicity de-
tector that is evaluated with manually labeled 19,571 code review
comments. I evaluate ToxiCR with different combinations of ten
supervised learning models, five text vectorizers, and eight pre-
processing techniques (two of them are SE domain-specific). After
applying all possible combinations, I have found that ToxiCR signif-
icantly outperformed existing toxicity classifiers with accuracy of
95.8% and an F1 score of 88.9%.

KEYWORDS
developers interaction, toxicity, deep learning, NLP
ACM Reference Format:
Jaydeb Sarker. 2022. ‘Who built this crap?’ Developing a Software En-
gineering Domain Specific Toxicity Detector. In 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE ’22), October
10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3551349.3559508

1 PROBLEM AND MOTIVATION
Toxicity is a severe threat to online communities tomaintain healthy
relations. To curb the toxicity from online textual communication,
Google’s Conversational AI team developed Perspective API [1].
Though the OSS community is more professional than online com-
munities, recent studies found the existence of toxicity during devel-
opers’ communication [15, 20, 23]. Open source toxicity is a barrier
for minority groups and newcomers. For example, due to getting
toxic comments, a newcomer may leave the project immediately.
Moreover, toxicity may have a negative correlation to promote
diversity and inclusion in OSS communities. Studies also suggest
that it takes a longer time to complete the project due to toxicity
during developers’ interactions [6]. Hence, identification of toxicity
is crucial for OSS communities but it is highly time consuming for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3559508

large scale OSS communities (i.g., Open Stack, Mozilla). Therefore,
automatic identification of toxicity may help the OSS community
to mitigate the toxicity from this domain. Though researchers pro-
posed tools to detect toxicity using Natural Language Processing
(NLP) and Machine Learning (ML) techniques, those failed to detect
toxicity in the SE domain [20]. Therefore, Raman et al. encountered
the challenge by developing a toxicity detector (‘STRUDEL tool’)
that was trained with only 654 SE labeled texts [18]. Further studies
found that the tool performed poorly on the SE texts [15, 17, 20].

Hence, it is necessary to develop a reliable toxicity detector
for the SE domain to combat toxicity from OSS communities. To
achieve this goal, I present ToxiCR, a supervised learning-based
toxicity detector for the SE domain. ToxiCR is trained and tested
using a large scale dataset of 19,571 code review comments. During
our ten-fold cross validation based evaluations, the best performing
model achieved 88.9% an F11 score of and 95.8% accuracy. We have
made our dataset, tool, and evaluation results publicly available on
Github at: https://github.com/WSU-SEAL/ToxiCR.

2 RELATEDWORKS
Prior studies reported that toxicity in OSS projects caused burnout
among developers [18] and newcomers may leave the project [20].
To better understand the toxicity in the OSS development, Miller
et al. conducted a qualitative study on 100 Github issue discus-
sions [15]. During their study, they mentioned the necessity of a
reliable toxicity detector for the SE domain [15]. Similar to toxi-
city, recent studies also investigated incivility [8], pushback [5],
interpersonal conflicts [17], and destructive criticism [11] during
code reviews. Since researchers in the NLP domain developed tox-
icity detectors to combat toxicity in online discussions [1, 9], the
SE specific toxicity detector is hardly available. Raman et al. [18]
are the first ones who developed the SE specific toxicity detector
(‘STRUDEL tool’ hereinafter) with the combination of Perspective
API [1] and Stanford Politeness Detector [3]. Sarker et al. reported
that the contemporary toxicity detectors including STRUDEL tool
performed poorly on the SE dataset [20].

3 APPROACH AND UNIQUENESS
Context and Rubric: The meaning of toxicity is a complex phe-
nomena and prior works have different views to label a text as
toxic. Jigsaw Conversational AI [1] team provided a definition of
toxicity as “a text that makes a person to leave the discussion due
to disrespectful, rude, or unreasonable comments.” However, the
OSS community is highly professional, it is needed to adopt the
SE specific rubric to mark a text as toxic. Since prior studies lack a
reliable definition of toxicity in the SE domain, I and my colleague
went through 1000 code review texts and empirically developed

https://doi.org/10.1145/3551349.3559508
https://doi.org/10.1145/3551349.3559508
https://doi.org/10.1145/3551349.3559508
https://github.com/WSU-SEAL/ToxiCR
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3551349.3559508&domain=pdf&date_stamp=2023-01-05

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jaydeb Sarker

Figure 1: A simplified overview of ToxiCR

a rubric to identify a text in the SE domain as toxic or not [20].
According to our definition, when a comment in the SE domain
contains any of them (i.e., swearing, cursing, insults, identity attack,
threat, sexual attacking words), it would be labeled as toxic.

Dataset: Since code review is a process of direct interaction
between developers, there is a high chance of toxic texts during
code reviews. Therefore, following the rubric [20], I and my col-
league manually labeled 6,533 code review comments from Android,
Chromium, and Libreoffice projects. Since deep learning models
need a large amount of data during training to achieve a high per-
formance, I follow the exact process of our prior study and label
13,025 code reviews from open stack projects [21]. The inter-rater
agreement (Cohen’s Kappa) is 0.92 and 19.1% data (3,757 comments)
are labeled as toxic among 19,571 labeled comments.

Text Preprocessing and Vectorizers: Figure 1 represents a
simplified overview of ToxiCR. I have written the tool using Python
language with the TensorFlow framework. Since code review com-
ments contain URLs, technical jargons, code snippets, we have
applied five mandatory preprocessing and three optional prepro-
cessing steps. Five mandatory preprocessing includes URL removal,
Contraction expansion, Symbol removal, Repetition elimination,
and Adversarial pattern identification. These five steps help to re-
move the unnecessary features. I empirically evaluated the impact
of remaining three optional preprocessing which includes Identi-
fier splitting, Programming Keywords Removal, and Count pro-
fane words. I have used five different vectorizers with ToxiCR. The
vectorizers include TfIdf, three context-free (i.e., Word2Vec [14],
GloVe [16], fastText [2]), and context-based Bidirectional Encoder
Representations from Transformers BERT [4] pretrained vector-
izer. However, I evaluated TfIdf with five classical and ensemble
(CLE) models, three context-free with Deep Neural Networks (DNN)
models, and BERT uses its pretrained context-based vectorizer.

Machine LearningModels: I have used five CLEmodels includ-
ing Decision Tree, Logistic Regression, Support-Vector Machine,
Random Forest (RF), and Gradient-Boosted Trees from scikit-learn
in python. Since I have evaluated ToxiCR with a large-scale dataset,
I choose four DNN models. The DNN includes Deep Pyramid CNN
(DPCNN) [13], Long Short Term Memory (LSTM) [12], BiLSTM
[10], and Gated Recurrent Unit (GRU) [7]. Recent years, BERT [4]
outperformed other state-of-the-art models in text classification.
Each of the DNN models has three basic layers. After preprocess-
ing the input text, the embedding layer maps the input text to the
embedded matrix. The second layer is the Hidden State Layer that
takes the input as an embedded matrix and captures the high level
semantics of the words. This layer has four different blocks of DNNs
(i.g., DPCNN, LSTM, GRU). A user can choose any model during
training time. Finally, we have a classification layer to project out-
put. Similar to the DNN model, I used the BERT-base pretrained

Table 1: Performance of the models for toxic (1) class

Models P1 R1 F11 Acc
STRUDEL tool (retrain) [22] 0.85 0.86 0.85 0.94
RF + profanity 0.917 0.845 0.879 0.955
GRU +(profane, id) 0.897 0.856 0.876 0.954
BERT + keyword 0.907 0.874 0.889 0.958

vectorizer in the BERT model. I use a dropout layer to prevent
overfitting with the BERT model. Further, I choose ‘binary cross
entropy’ as loss function for DNNs and BERT models. I use the
‘sigmoid’ activation function with DNNs and ‘linear’ activation
with BERT .

4 RESULTS AND CONTRIBUTIONS
Model Training: During the experiment of each model, I have
done an extensive evaluation using five times 10-fold cross vali-
dation and taken the mean of each evaluation metrics. I measure
precision, recall, and F1 score for both toxic (1) and non-toxic (0)
classes where we prioritize the F1-score of toxic class (F11) most.
Moreover, I use stratified sampling to split the data and make sure
the similar ratios between two classes. To customize the hyperpa-
rameters in DNN and BERT models, I split the data into 8:1:1 ratios
for training, validation, and testing. In each epoch of the training,
the EarlyStopping function with minimum value loss prevents the
model from overfitting by using the validation set. The threshold
value to being toxic is set to >= 0.5

Results: I have done three steps of evaluation. To get the baseline
performances, I evaluated four state-of-the-art baseline models (i.e.,
Perspective API [20], pretrained STRUDEL tool [20], DPCNN [20],
and retrained STRUDEL tool [22]) with our dataset. Among all
state of the art models, the retrained STRUDEL tool achieved the
best performance with 0.85 F11 score. During evaluation of our ten
models, I have not applied the three optional preprocessing initially
and RF outperformed all CLE models with 0.859 F11 score. On the
other hand, the GRU achieved 0.875 F11 score with GloVe embed-
ding and secured top position among all DNN models. Without the
optional preprocessing, BERT achieved the best F11 score (0.887)
and accuracy 95.7%.

To understand the impact of optional preprocessing, I have ap-
plied different combinations of the three optional preprocessings.
Table 1 represents the results of the top three models performance
for toxic class after applying optional preprocessing where they
outperformed the baseline STRUDELmodel. RF boosts performance
with profane count preprocessing (F11 score is 0.879) that outper-
forms the best GRUmodel. However, DNN and BERTmodels do not
improve a lot after applying the optional preprocessings. The best
model for ToxiCR is BERT with keyword removal preprocessing
that achieved 0.889 F11 score and 95.8% accuracy. I believe that
ToxiCR will be helpful to prevent toxicity for the OSS communities.

Contributions: I have contributed the following in this study:
i) developed a rubric for the SE domain to label toxicity and labeled
19,571 code review comments, ii) developed publicly available SE
domain specific toxicity detector [19], iii) empirical evaluation of
ten ML models and three optional preprocessings, and iv) finding
the best possible combination.

‘Who built this crap?’ Developing a Software Engineering Domain Specific Toxicity Detector ASE ’22, October 10–14, 2022, Rochester, MI, USA

REFERENCES
[1] Conversation AI. [n.d.]. What if technology could help improve conversations

online? https://www.perspectiveapi.com/
[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. En-

riching Word Vectors with Subword Information. arXiv preprint arXiv:1607.04606
(2016).

[3] Cristian Danescu-Niculescu-Mizil, Moritz Sudhof, Dan Jurafsky, Jure Leskovec,
and Christopher Potts. 2013. A computational approach to politeness with
application to social factors. arXiv preprint arXiv:1306.6078 (2013).

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
(June 2019), 4171–4186. https://doi.org/10.18653/v1/N19-1423

[5] Carolyn D Egelman, Emerson Murphy-Hill, Elizabeth Kammer, Margaret Morrow
Hodges, Collin Green, Ciera Jaspan, and James Lin. 2020. Predicting develop-
ers’ negative feelings about code review. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). IEEE, 174–185.

[6] Ikram El Asri, Noureddine Kerzazi, Gias Uddin, Foutse Khomh, and MA Janati
Idrissi. 2019. An empirical study of sentiments in code reviews. Information and
Software Technology 114 (2019), 37–54.

[7] Nelly Elsayed, Anthony S Maida, and Magdy Bayoumi. 2019. Deep Gated Re-
current and Convolutional Network Hybrid Model for Univariate Time Series
Classification. International Journal of Advanced Computer Science and Applica-
tions 10, 5 (2019).

[8] Isabella Ferreira, Jinghui Cheng, and Bram Adams. 2021. The" Shut the f** k up"
Phenomenon: Characterizing Incivility in Open Source Code Review Discussions.
Proceedings of the ACM on Human-Computer Interaction 5, CSCW2 (2021), 1–35.

[9] Spiros V Georgakopoulos, Sotiris K Tasoulis, Aristidis G Vrahatis, and Vassilis P
Plagianakos. 2018. Convolutional neural networks for toxic comment classi-
fication. In Proceedings of the 10th Hellenic Conference on Artificial Intelligence.
1–6.

[10] Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification
with bidirectional LSTM and other neural network architectures. Neural networks
18, 5-6 (2005), 602–610.

[11] Sanuri Dananja Gunawardena, Peter Devine, Isabelle Beaumont, Lola Garden,
Emerson Rex Murphy-Hill, and Kelly Blincoe. 2022. Destructive Criticism in
Software Code Review Impacts Inclusion. (2022).

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[13] Rie Johnson and Tong Zhang. 2017. Deep pyramid convolutional neural networks
for text categorization. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 562–570.

[14] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[15] Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan Vasilescu, and Christian
Kästner. 2022. “Did You Miss My Comment or What?” Understanding Toxicity
in Open Source Discussions. In In 44th International Conference on Software
Engineering (ICSE’22).

[16] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[17] Huilian Sophie Qiu, Bogdan Vasilescu, Christian Kästner, Carolyn Egelman, Ciera
Jaspan, and Emerson Murphy-Hill. 2022. Detecting Interpersonal Conflict in
Issues and Code Review: Cross Pollinating Open-and Closed-Source Approaches.
In 2022 IEEE/ACM 44th International Conference on Software Engineering: Software
Engineering in Society (ICSE-SEIS). IEEE, 41–55.

[18] Naveen Raman, Minxuan Cao, Yulia Tsvetkov, Christian Kästner, and Bogdan
Vasilescu. 2020. Stress and burnout in open source: Toward finding, understand-
ing, and mitigating unhealthy interactions. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: New Ideas and Emerging Results.
57–60.

[19] Jaydeb Sarkar, Asif Turzo, Ming Dong, and Amiangshu Bosu. 2022. ToxiCR:
Replication package. Github. https://github.com/WSU-SEAL/ToxiCR.

[20] Jaydeb Sarker, Asif Kamal Turzo, and Amiangshu Bosu. 2020. A Benchmark Study
of the Contemporary Toxicity Detectors on Software Engineering Interactions. In
2020 27th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 218–227.

[21] Jaydeb Sarker, Asif Kamal Turzo, Ming Dong, and Amiangshu Bosu. 2022. Au-
tomated Identification of Toxic Code Reviews Using ToxiCR. arXiv preprint
arXiv:2202.13056 (2022).

[22] Jaydeb Sarker, Asif Kamal Turzo, Ming Dong, and Amiangshu Bosu.
2022. WSU SEAL implementation of the STRUDEL Toxicity detector.
https://github.com/WSU-SEAL/toxicity-detector/tree/master/WSU_SEAL.

[23] Megan Squire and Rebecca Gazda. 2015. FLOSS as a Source for Profanity and
Insults: Collecting the Data. In 2015 48th Hawaii International Conference on
System Sciences. IEEE, 5290–5298.

https://www.perspectiveapi.com/
https://doi.org/10.18653/v1/N19-1423

	Abstract
	1 Problem and Motivation
	2 Related works
	3 Approach and Uniqueness
	4 results and contributions
	References

